
ReSIST: Resilience for Survivability in IST

A European Network of Excellence

Contract Number: 026764

Deliverable D14: Student Seminar Programme

Report Preparation Date: June 2006

Classification: Public Circulation

Contract Start Date: 1st January 2006

Contract Duration: 36 months

Project Co-ordinator: LAAS-CNRS

Partners: Budapest University of Technology and Economics
City University, London
Technische Universität Darmstadt
Deep Blue Srl
Institut Eurécom
France Telecom Recherche et Développement
IBM Research GmbH
Université de Rennes 1 – IRISA
Université de Toulouse III – IRIT
Vytautas Magnus University, Kaunas
Fundação da Faculdade de Ciencas da Universidade de Lisboa
University of Newcastle upon Tyne
Università di Pisa
QinetiQ Limited
Università degli studi di Roma "La Sapienza"
Universität Ulm
University of Southampton

Student Seminar

Programme
and

Collection of Extended Abstracts

Edited by Luca Simoncini (Università di Pisa)

Index

ReSIST Student Seminar page 1

1. Aims of the ReSIST Student Seminar page 1

2. Venue page 1

3. Call for Papers/Participation page 1

4. Decisions of the Program Committee page 2

Appendix A Call for Papers/Participation to ReSIST Student Seminar page 5

Appendix B ReSIST Student Seminar Advance Program and Extended

Abstracts divided into Sessions page 11

ReSIST Student Seminar Advance Program page 13

Session on Security page 19

An Analysis of Attack Processes Observed on a High-Interaction Honeypot

Eric Alata, LAAS-CNRS, France page 21

Identifying the Source of Messages in Computer Networks

Marios S. Andreou, University of Newcastle upon Tyne, UK page 26

Vulnerability Assessment Through Attack Injection

João Antunes, University of Lisbon, Portugal page 31

Adaptive Security

Christiaan Lamprecht, University of Newcastle upon Tyne, UK page35

ScriptGen: Using Protocol-Independence to Build

Middle-Interaction Honeypots

Corrado Leita, Institut Eurecom, France page 41

Early Warning System Based on a Distributed Honeypot Network

VanHau Pham, F. Pouget, M. Dacier, Institut Eurecom, France page 46

Session on System Modelling page 51

A Multi-Perspective Approach for the Design of Error-tolerant

Socio-Technical Safety-Critical Interactive Systems

Sandra Basnyat, University Paul Sabatier, France page 53

ReSIST Knowledge Architecture: Semantically Enabling Large-scale

Collaborative Projects

Afraz Jaffri, Benedicto Rodriguez, University of Southampton, UK page 58

Introducing Hazard and Operability Analysis (HazOp) in Business

Critical Software Development

Torgrim Lauritsen, University of Newcastle upon Tyne, UK page 63

Enterprise Compliance at Stake. Dependability Research to the Rescue!

Samuel Müller, IBM Zurich Research Lab, Switzerland page 66

Fault Modelling for Residential Gateways

Sakkaravarthi Ramanathan, France Telecom, France page 70

Modelling Dependence and its Effects on Coincident Failure in

Fault-Tolerant, Software-based Systems

Kizito Salako, CSR, City University, UK page 74

Session on Model-based Verification page 79

Detecting Data Leakage in Malicious Java Applets

Paolo Masci University of Pisa, Italy page 81

Handling Large Models in Model-based Testing

Zoltán Micskei, Budapest University of Technology and Economics, Hungary page 85

Testing Applications and Services in Mobile Systems

Nguyen Minh Duc, LAAS-CNRS, France page 88

Behavior-Driven Testing of Windows Device Drivers

Constantin S�rbu, Technical University of Darmstadt, Germany page 92

On Exploiting Symmetry to Verify Distributed Protocols

Marco Serafini, Technical University of Darmstadt, Germany and

Péter Bokor, Budapest University of Technology and Economics, Hungary page 98

Session on Diversity page 103

Potential for Dependability Gains with Diverse Off-The-Shelf Components:

a Study with SQL Database Servers

Ilir Gashi, CSR, City University, UK page 105

Improvement of DBMS Performance through Diverse Redundancy

Vladimir Stankovic, Peter Popov, CSR, City University, UK page 109

Session on Mobile Systems page 115

Storage Mechanisms for Collaborative Backup of Mobile Devices

Ludovic Courtès, LAAS-CNRS, France page 117

Towards Error Recovery in Multi-Agent Systems

Alexei Iliasov, University of Newcastle upon Tyne, UK page 123

Increasing Data Resilience of Mobile Devices with a Collaborative

Backup Service

Damien Martin-Guillerez, IRISA/ENS-Cachan, France page 128

Random Walk for Service Discovery in Mobile Ad hoc Networks

Adnan Noor Mian, University of Rome “La Sapienza”, Italy page 132

Session on Distributed Systems page 137

Quantitative Evaluation of Distributed Algorithms

Lorenzo Falai, University of Florence, Italy page 139

From Fast to Lightweight Atomic Memory in Large-Scale Dynamic

Distributed Systems

Vincent Gramoli, IRISA - INRIA Rennes, CNRS, France page 143

Dependable Middleware for Unpredictable Environments

Odorico M. Mendizabal, António Casimiro, Paulo Veríssimo page 149

A Language Support for Fault Tolerance in Service Oriented Architectures

Nicolas Salatge, LAAS-CNRS, France page 153

Challenges for an Interoperable Data Distribution Middleware

Sirio Scipioni, University of Rome “La Sapienza", Italia page 160

Proactive Resilience

Paulo Sousa, University of Lisbon, Portugal page 164

A Mediator System for Improving Dependability of Web Services

Yuhui Chen, University of Newcastle upon Tyne, UK page 168

ReSIST Student Seminar

1. Aims of the ReSIST Student Seminar

The student seminar aims to foster the integration of the ReSIST Doctorate students

within the network, via a) the presentation of their research work to other ReSIST

students and researchers, and b) the discussions that will ensue.

This Seminar is only open to ReSIST members. Attendance at the Seminar is limited in

order to encourage highly interactive discussions.

Participation of members of both genders is particularly encouraged.

2. Venue

The ReSIST Student Seminar will take place on September 5-7, 2006 at Centro Studi "I

Cappuccini", Via Calenzano 38, San Miniato, Pisa, Italy

3. Call for Papers/Participation

The Call for Papers/Participation (Appendix A) was distributed to all ReSIST Member

sites on March 1, 2006 and by the submission deadline the situation was, in terms of

number of submitted papers, of student’s authors and distribution among the ReSIST

sites:

Total number of submitted papers: 30

Total number of student authors: 32 (two papers are with two authors)

Darmstadt: 1+1(joint with BUTE)

IRIT: 1

Newcastle: 1+1+1+1+1

BUTE: 1(joint with Darmstadt)+1

LAAS: 1+1+1+1

Pisa: 1+1

IRISA: 1+1

IBM: 1

Roma: 1+1

Southampton: 1 (two authors)

Lisbon: 1+1+1

Eurecom: 1+1

France Telecom: 1

City: 1+1+1

1

4. Decisions of the Program Committee

The Program Committee for the ReSIST Student Seminar was composed by the members

of the Training and Dissemination Committee. They interacted via e-mail and the agreed

decisions were:

on the format of the Seminar:

• Sessions of student papers should present clear problem statements, the core

technology aspects and the lines they plan to follow during their PhD, moderated

by more mature students. These sessions should have a long and free discussion

part at their end;

• Panels-like sessions, with short statements presented in an informal way, mainly

run by mature students on either results or open problems, with lively

contributions of the audience;

• Free gathering and informal discussions in small number of students during the

seminar, as requested by the students themselves;

• The role of participants to the Seminar:

o Speakers: students presenting their paper should: a) distribute

presentation time into 5/7 minutes dedicated to the general topic and 10/8

minutes on the associated research direction, avoiding all possible

technicalities of his/her research. A maximum of slides (7 at most - 3 for

the general topic and 4 for his/her associated research) is requested;

o The general discussion at the end of each session should provide the

present general framework and target of ongoing research in the specific

field at the light of the presented papers. The senior student that will act

as session chair and discussion moderator should: a) read all contributions

in his/her session, b) prepare questions to foster discussion and c) try to

summarize, with the help of the audience, what is the present situation on

the topic at the light of the presented papers;

o Panels: they must be visionary and should provide: a) identification of

gaps that need to be covered for allowing resilience scaling technologies

(evolvability, assessability, usability and diversity) and b) steps to cover

the gaps. The senior student who moderates the panel should: a) have a

clear view of the ReSIST goals, b) prepare a short introduction to the

panel for channelling the discussion and c) provide instructions to the

panellists on how prepare their statements. The senior who helps the

student moderator in organizing the panel should: a) interact with the

student moderator in preparing the panel and b) prepare a report of the

panel for presentation in the last day general discussion.

o Seniors attending the seminar should contribute to the discussions.

2

On the basis of these indications, the decisions of the Program Committee were:

• All 30 submissions were accepted, as well as structuring the Student Seminar into

Sessions, discussion at the end of each sessions, panels on the topics of the

session;

• Sessions will be chaired by a senior student (possibly one of the presenter) who

will also moderate the final discussion at the end of the session;

• Panels will be moderated by a senior student with the help, in the organization

part, of a senior member;

• Minutes of the panels will be taken and reported in the last day in the general

discussion.

The accepted papers were assigned to several Sessions as in Table 1, were the first

column indicated the name of the authors and the name of the thesis advisor, when either

indicated or identified.

The entire organization, structure and Advance Program was presented to and approved

by the ReSIST Executive Board that was held in Paris on June 6, 2006. The Sessions, the

names of the proposed Session Chairs and Moderators for the Open discussions as well as

the proposed Panels Moderators and Panel Co-organizers were presented and approved. It

was finally identified the list of senior members that are willing to participate to the

Student Seminar. They are: Neeraj Suri, Chidung Lac, Al Avizienis, Michel Raynal,

Hugh Glaser, Holger Pfeifer, Birgit Pfizmann, Luca Simoncini, Jean-Claude Laprie,

Karama Kanoun, Istvan Majzik, Marc-Olivier Killijian, Paulo Verissimo, Brian Randell,

Roberto Bonato, Yves Roudier.

The final number of participants will therefore be 32 Students + 16 Senior Members,

fitting the budget allocated for this event.

In Appendix B, the ReSIST Student Seminar Advance Program as well as the set of

extended abstracts of the papers that will be presented, divided into sessions are reported.

The findings and suggestions arising from the Panels discussions as well as the final list

of participants will be reported in the first Periodic Activity Report after the end of the

Student Seminar.

3

Security

Systems

Modelling

Mobile

Systems

Model

Based

Verification

Distributed

Systems Diversity

Alata/Kaaniche X

Andreou/van Moorsel X

Antunes/Neves X

Basnyat/Palanque X

Courtes/Powell X

Falai/Bondavalli X

Gashi/Popov X

Gramoli/Raynal X

Iliasov/Romanovsky X

Jaffri-

Rodriguez/Glaser X

Lamprecht/van

Moorsel X

Lauritsen/Anderson X

Leita/Dacier X

Martin-

Guillerez/Banatre X

Masci/Bernardeschi X

Mendizabal/Casimiro X

Mian/Baldoni X

Micskei/Majzik X

Minh

Duc/Waeselynck X

Mueller/Pfitzmann X

Pham/Dacier X

Ramanathan/Chidung

Lac X

Salako/Strigini X

Salatge/Fabre X

Sarbu/Suri X

Scipioni/Baldoni X

Serafini-Bokor/Suri X

Sousa/Verissimo X

Stankovic/Popov X

Yuhui/Romanovsky X

Table 1

4

Appendix A

Call for Papers/Participation to ReSIST
Student Seminar

5

6

ReSIST Student Seminar

5-7 September 2006,

Centro Studi "I Cappuccini"

Via Calenzano 38, San Miniato, Pisa, Italy

CALL FOR PAPERS/PARTICIPATION

Aims of the ReSIST Student Seminar

The student seminar aims to foster the integration of the ReSIST

Doctorate students within the network, via a) the presentation of their

research work to other ReSIST students and researchers, and b) the

discussions that will ensue.

This Seminar is only open to ReSIST members. Submissions are welcomed

from Doctorate Students of all ReSIST partners. Attendance at the

Seminar will be limited in order to encourage highly interactive

discussions.

Participation of members of both genders is particularly encouraged.

Format of the Seminar

Accepted papers will be selected for presentation in several themed

sessions in relation to the ReSIST Description of Work (DoW).

A total number of 20-25 presentations is envisioned, in order to leave

significant space for discussions.

7

We encourage a dynamic presentation style (as opposed to simply

reading one's slides!!).

Time and Place

The ReSIST Student Seminar will take place on September 5-7, 2006 at

Centro Studi "I Cappuccini", Via Calenzano 38, San Miniato, Pisa, Italy

* How to reach San Miniato from Pisa*

On Arrival:

By car:

If you arrive at Pisa Airport and rent a car, you have to follow, at airport

exit, the direction towards Florence (Firenze) on S.G.C. (means Strada di

Grande Comunicazione-High Traffic Highway). Exit at San Miniato, and

follow direction to San Miniato Center. When you are up-hill in San Miniato,

follow the direction to "I Cappuccini" (Parking lots available at Centro

Studi) (average time 30-40 minutes).

By train:

At Pisa Airport proceed towards the train track, outside the main Hall. In

the main Hall please buy a train ticket to Empoli, and do not forget to

obliterate it at the machine next to ticket office or next to the train

track. All trains are OK, with an average frequency of one train per hour.

At Empoli station take a taxi to "I Cappuccini" in San Miniato (average

cost 15 Euros).

On Departure:

Two buses will be organized to bring back to Pisa Airport the participants

leaving on September 7 (after lunch) and for participants leaving on

September 8 (after the end of the EB).

Registration fees

Participation to SS is charged to ReSIST, and the participants will have to

pay a registration fee covering full board accomodation in the Centro

Studi "I Cappuccini".

Fee per participant:

Students (from Sept. 4 to 7) � 600,00

Seniors (from Sept. 4 to 8) � 750,00

Seniors (arriving Sept. 7 to 8) � 230,00

8

The fee includes:

1) for students (hotel room, breakfasts, coffee-breaks, lunches including

Sept.7, dinners including Sept. 4 and banquet on Sept.6, transportation

to Pisa airport on Sept. 7 afternoon)

2) for seniors (staying from Sept.4 to Sept.8 - that is attending SS,

Committees and EB) (hotel room, breakfasts, coffee-breaks, lunches

including Sept.8, dinners including Sept. 4, banquets on Sept. 6 and on

Sept. 7, transportation to Pisa airport on Sept. 8 afternoon)

3) for seniors (staying from Sept.7 to Sept. 8 - that is additional seniors

coming only for the Committees and EB) (hotel room, breakfast, coffee-

breaks, lunches including Sept.7 and 8, banquet on Sept. 7,

transportation to Pisa airport on Sept. 8 afternoon).

--

Submissions

Topics for Submission

All members of the Executive Board of ReSIST should proactively solicit

their Doctorate Students to propose a submission, and will provide a

preliminary screening on the topics of such proposed submissions, so to

finalize actual submissions both in terms of numbers and in terms of

relevance to the ReSIST DoW.

Instructions for Submission

1. Prepare an extended abstract (2 to 4 A4 pages) .pdf format on a topic

relevant to ReSIST.

2. Complete the submission form (below), including suggestion(s) for

discussions, and return it with the extended abstract to:

<rresist-td@laas.fr>

+ The deadline for submissions is 114 April 2006

+ Applicants will be notified by 119 May 2006

+ The workshop is only open to ReSIST members

+ Multiple submissions from member partners will be accepted (subject to

9

the constraint of achieving as broad a representation of members as

possible)

+ The collection of accepted abstracts will be made available on the

ReSIST web site before the seminar, as well as the presentation slides

after the seminar.

Programme/Organising Committee

The Program Committee is composed by the Members of the Training and

Dissemination Committee

--------------Complete and return this form--------------

with extended abstract

To: <resist-td@laas.fr>

By: 14 April 2006

Name:

ReSIST Partner:

Email Address:

Telephone:

Fax:

Brief Biography:

(1-2 paragraphs including current position and research activities, with

keywords)

Suggested topic(s) for discussions:

---------------------- End of Form ----------------------

(Attach extended abstract, equivalent of 2 to 4 A4 pages)

end

================

10

Appendix B

ReSIST Student Seminar Advance Program
and

Extended Abstracts divided into Sessions

11

12

Student Seminar Advance Program

September 5 08.30 – 09.00 Welcome and Seminar presentation

09.00 – 11.00 Session on Security
Chair: Christiaan Lamprecht, University of

Newcastle upon Tyne, UK

09.00 – 09.20 An Analysis of Attack Processes Observed on a High-Interaction
Honeypot – Eric Alata, LAAS-CNRS, France

09.20 – 09.40 Identifying the Source of Messages in Computer Networks - Marios
S. Andreou, University of Newcastle upon Tyne, UK

09.40 – 10.00 Vulnerability Assessment Through Attack Injection - João Antunes,
University of Lisbon, Portugal

10.00 – 10.20 Adaptive Security – Christiaan Lamprecht, University of Newcastle

upon Tyne, UK
10.20 – 10.40 ScriptGen: Using Protocol-Independence to Build Middle-

Interaction Honeypots - Corrado Leita, Institut Eurecom, France
10.40 – 11.00 Early Warning System Based on a Distributed Honeypot Network -

VanHau Pham, F. Pouget, M. Dacier, Institut Eurecom, France

11.00 – 11.20 Open discussion on the Session
Moderator: Christiaan Johan Lamprecht, University

of Newcastle upon Tyne, UK

11.20 – 11.50 Coffee break

11.50 – 12.50 Panel on Security Issues
Organizers: Eric Alata, LAAS-CNRS, France, Birgit

Pfizmann, IBM Research, Switzerland

Panelists: TBD

12.50 – 14.20 Lunch

13

14.20 – 16.20 Session on System Modelling
Chair: Benedicto Rodriguez, University of

Southampton, UK

14.20 – 14.40 A Multi-Perspective Approach for the Design of Error-tolerant
Socio-Technical Safety-Critical Interactive Systems - Sandra
Basnyat, University Paul Sabatier, France

14.40 – 15.00 ReSIST Knowledge Architecture: Semantically Enabling Large-
scale Collaborative Projects - Afraz Jaffri, Benedicto Rodriguez,
University of Southampton, UK

15.00 – 15.20 Introducing Hazard and Operability Analysis (HazOp) in Business
Critical Software Development - Torgrim Lauritsen, University of

Newcastle upon Tyne, UK
15.20 – 15.40 Enterprise Compliance at Stake. Dependability Research to the

Rescue! - Samuel Müller, IBM Zurich Research Lab, Switzerland
15.40 – 16.00 Fault Modelling for Residential Gateways – Sakkaravarthi

Ramanathan, France Telecom, France
16.00 – 16.20 Modelling Dependence and its Effects on Coincident Failure in

Fault-Tolerant, Software-based Systems – Kizito Salako, CSR, City
University, UK

16.20 – 16.40 Open discussion on the Session
Moderator: Benedicto Rodriguez, University of

Southampton, UK

16.40 – 17.10 Coffee break

17.10 – 18.10 Panel on System Modelling
Organizers: Kizito Salako, City University, UK, Brian

Randell, University of Newcastle upon Tyne, UK

Panelists: TBD

18.10 – 20.00 Free gathering and informal discussions

20.30 Dinner

14

September 6 08.30 – 10.10 Session on Model-based Verification
Chair: Paolo Masci, University of Pisa, Italy

08.30 – 08.50 Detecting Data Leakage in Malicious Java Applets - Paolo Masci
University of Pisa, Italy

08.50 – 09.10 Handling Large Models in Model-based Testing - Zoltán Micskei,

Budapest University of Technology and Economics, Hungary
09.10 – 09.30 Testing Applications and Services in Mobile Systems – Nguyen

Minh Duc, LAAS-CNRS, France
09.30 – 09.50 Behavior-Driven Testing of Windows Device Drivers – Constantin

S�rbu, Technical University of Darmstadt, Germany
09.50 – 10.10 On Exploiting Symmetry to Verify Distributed Protocols – Marco

Serafini, Technical University of Darmstadt, Germany and Péter
Bokor, Budapest University of Technology and Economics,

Hungary

10.10 – 10.30 Open discussion on the Session
Moderator: Paolo Masci, University of Pisa, Italy

10.30 – 11.00 Coffee break

11.00 – 12.00 Panel on Model-based Verification
Organizers: Constantin S�rbu, Technical University

of Darmstadt, Germany, Istvan Majzik, Budapest
University of Technology and Economics, Hungary

Panelists: TBD

12.00 – 12.40 Session on Diversity
Chair: - Ilir Gashi, CSR, City University, UK

12.00 – 12.20 Potential for Dependability Gains with Diverse Off-The-Shelf
Components: a Study with SQL Database Servers - Ilir Gashi, CSR,
City University, UK

12.20 – 12.40 Improvement of DBMS Performance through Diverse Redundancy -
Vladimir Stankovic, Peter Popov, CSR, City University, UK

12.40 – 13.00 Open discussion on the Session
Moderator: - Ilir Gashi, CSR, City University, UK

13.00 – 14.30 Lunch

15

14.30 – 15.50 Session on Mobile Systems
Chair: Ludovic Courtès, LAAS-CNRS, France

14.30 – 14.50 Storage Mechanisms for Collaborative Backup of Mobile Devices -
Ludovic Courtès, LAAS-CNRS, France

14.50 – 15.10 Towards Error Recovery in Multi-Agent Systems - Alexei Iliasov,
University of Newcastle upon Tyne, UK

15.10 – 15.30 Increasing Data Resilience of Mobile Devices with a Collaborative
Backup Service - Damien Martin-Guillerez, IRISA/ENS-Cachan,
France

15.30 – 15.50 Random Walk for Service Discovery in Mobile Ad hoc Networks -

Adnan Noor Mian, University of Rome “La Sapienza”, Italy

15.50 – 16.10 Open discussion on the Session
Moderator: Ludovic Courtès, LAAS-CNRS, France

16.10 – 16.40 Coffee break

16.40 – 17.40 Panel on Mobile Systems
Organizers: Adnan Noor Mian, University of Rome
“La Sapienza”, Italy, Marc-Olivier Killijian, LAAS-

CNRS, France

Panelists: TBD

17.40 – 19.30 Free gathering and informal discussions

20.30 Banquet at Belvedere

16

September 7 08.30 – 10.50 Session on Distributed Systems
Chair: Paulo Sousa, University of Lisbon, Portugal

08.30 – 08.50 Quantitative Evaluation of Distributed Algorithms - Lorenzo Falai,
University of Florence, Italy

08.50 – 09.10 From Fast to Lightweight Atomic Memory in Large-Scale Dynamic
Distributed Systems - Vincent Gramoli, IRISA - INRIA Rennes,
CNRS, France

09.10 – 09.30 Dependable Middleware for Unpredictable Environments – Odorico
M. Mendizabal, António Casimiro, Paulo Veríssimo

09.30 – 09.50 A Language Support for Fault Tolerance in Service Oriented

Architectures - Nicolas Salatge, LAAS-CNRS, France
09.50 – 10.10 Challenges for an Interoperable Data Distribution Middleware -

Sirio Scipioni, University of Rome “La Sapienza", Italia
10.10 – 10.30 Proactive Resilience - Paulo Sousa, University of Lisbon, Portugal
10.30 – 10.50 A Mediator System for Improving Dependability of Web Services -

Yuhui Chen, University of Newcastle upon Tyne, UK

10.50 – 11.10 Open discussion on the Session
Moderator: Paulo Sousa, University of Lisbon,

Portugal

11.10 – 11.30 Coffee break

11.30 – 12.30 Panel on Distributed Systems
Organizers: Vincent Gramoli, IRISA - INRIA

Rennes, CNRS, France, Paulo Verissimo,
University of Lisbon, Portugal

Panelists: TBD

12.30 – 13.30 General discussion and wrap-up

13.30 – 15.00 Lunch

15.00 End of Student Seminar and
bus back to Pisa Airport

17

18

Session on Security

Chair: Christiaan Johan Lamprecht,
University of Newcastle upon Tyne, UK

19

20

An analysis of attack processes observed on a

high-interaction honeypot

E. Alata

LAAS-CNRS

7, Avenue du Colonel Roche

31077 Toulouse Cedex - France

Tel : +33/5 61 33 64 53 - Fax: +33/5 61 33 64 11

Introduction

During the last decade, the Internet users have been facing a large variety of malicious threats and activities

including viruses, worms, denial of service attacks, phishing attempts, etc. Several initiatives, such as Sensor

project [3], CAIDA [11] and DShield [6], have been developed to monitor real world data related to malware

and attacks propagation on the Internet. Nevertheless, such information is not sufficient to model attack

processes and analyse their impact on the security of the targeted machines. The CADHo project [2] in which we

are involved is complementary to these initiatives and it is aimed at filling such a gap by carrying out the

following activities:

• deploying and sharing with the scientific community a distributed platform of honeypots [10] that gathers

data suitable to analyse the attack processes targeting a large number of machines connected to the

Internet.

• validating the usefulness of this platform by carrying out various analyses, based on the collected data, to

characterize the observed attacks and model their impact on security.

21

A honeypot is a machine connected to a network but that no one is supposed to use. If a connection occurs, it

must be, at best an accidental error or, more likely, an attempt to attack the machine. Two types of honeypots can

be distinguished depending on the level of interactivity that they offer to the attackers. Low-interaction

honeypots do not implement real functional services. They emulate simple services and cannot be compromised.

Therefore, these machines can not be used as stepping stones to carry out further attacks against third parties. On

the other hand, high-interaction honeypots offer real services to the attackers to interact with which makes them

more risky than low interaction honeypots. As a matter a fact, they offer a more suitable environment to collect

information on attackers activities once they manage to get the control of a target machine and try to progress in

the intrusion process to get additional privileges.

Both types of honeypots are investigated in the CADHo project to collect information about the malicious

activities on the Internet and to build models that can be used to characterize attackers behaviors and to support

the definition and the validation of the fault assumptions considered in the design of secure and intrusion tolerant

systems.

The first stage of the project has been focused on the deployment of a data collection environment (called

Leurré.com [1]) based on low-interaction honeypots. Several analyses carried out based on the data collected so

far from such honeypots have revealed that very interesting observations and conclusions can be derived with

respect to the attack activities observed on the Internet [2][8][7][9][10]. The second stage of the CADHo project

is aimed at setting up and deploying high-interaction honeypots to allow us to analyse and model the behavior of

malicious attackers once they have managed to compromise and get access to a new host, under strict control

and monitoring. We are mainly interesting in observing the progress of real attack processes and the activities

carried out by the attackers in a controlled environment.

We describe in this paper our implementation choices for the high-interaction honeypot as well as its

configuration to capture the activity of the intruder. Then we summarize some of the results of our analyses,

mainly 1) global statistics to give an overview of the activity on the honeypot 2) the description of the intrusion

process that we observed, 3) the behavior of the intruders (once they have broken into the honeypot) in order to

analyse whether they are human or robots, whether they are script kiddies or black hats, etc.

1. Architecture of our honeypot

In our implementation, we chose to use VMware software [13] and a virtual operating system upon VMware.

When an intruder succeeds in breaking into our honeypot, all the commands that he uses are captured and are

transferred to a database for post-processing. Our honeypot is a standard Gnu/Linux installation, with kernel 2.6

and the usual binary tools (compiler, usual commands, etc). So that the intruder can break into our honeypot, we

chose to use a simple vulnerability: weak passwords for user accounts. Of course, remote ssh connections to the

virtual host with ssh are authorized (and only these ones) so that the attacker can exploit this vulnerability. In

order to log all the login and passwords used by the intruders, we modified the source code of the ssh server

running on the honeypot. In the same way, we made some modifications of the virtual operating system kernel to

log all the commands used by the intruders.

22

The activities of the intruder logged by the honeypot are preprocessed and then stored in an SQL database. The

raw data are automatically processed to extract relevant information for further analyses, mainly 1) the IP

address of the attacking machine, 2) the login and the password tested, 3) the date of the connection, 4) the

terminal associated (tty) to each connection, 5) each command used by the attacker.

2. Architecture of our honeypot

2.1. Overview of the activity

The high-interaction honeypot deployed has been running for 131 days. Overall, 480 IP addresses were seen on

the honeypot. As illustrated on Figure 2.1.1, 197 IP addresses performed dictionary attacks and 35 carried out

real intrusion on the honeypot (see next section). The 248 IP addresses left were used for other activity such as

scanning, etc. Among the 197 IP addresses that made dictionary attacks, 18 succeeded in finding passwords (see

Figure 2.1.1).

Figure 2.1.1: Classification of IP addresses seen on the honeypot

The number of ssh connection attempts to the honeypot is 248717 (we do not consider here the scans on the ssh

port). This represents about 1900 connection attempts a day. Among these 248717 connection attempts, only 344

were successful. The total number of accounts tested is 41530. The most attacked account is of course the root

account.

After an observation period, we have decided to create 16 user accounts. Some accounts belong to the most

attacked accounts and some do not. We analyse in detail how these accounts were broken and what the intruders

did once they have broken into the system.

2.2. Intrusion process

The experiment revealed that the intrusion process is always exactly the same, in two steps.

The first step of the attack consists in dictionary attacks. In general, these attacks succeed in discovering our

weak passwords in a few days. By analysing the frequency of the ssh connections attempts from the same

23

attacking IP address, we can say that these dictionary attacks are performed by automatic scripts. Furthermore,

some finer analyses highlight that the addresses that executed dictionary attacks did not try other attacks on our

honeypot.

The second step of the attack consists in the real intrusion. We have noted that, several days after the guessing of

a weak password, an interactive ssh connection is realized on our honeypot by a human being. These intrusions

come from 35 IP addresses, and, surprisingly, these machines, for half of them, come from the same country.

Further analyses revealed that these machines did not make any other kind of attack on our honeypot, i.e, no

dictionary attack. It is noteworthy that none of the 35 IP addresses has been observed on the low-interaction

honeypots deployed through the Internet in the CADHo project (approximately 40). This is interesting because it

shows that these machines are totally dedicated to this kind of attack. They only target at our high-interaction

honeypot and only when they know at least one login and password on this machine.

We can conclude for these analyses that we have to face two distinct groups of machines that communicate with

each other. The first group is composed of machines that are specifically in charge of making automatic

dictionary attacks on some machines. The information collected is then published somewhere and used by the

second group of machines to perform real intrusions. This second group of machines is driven by human being,

and is analysed in more details in the next section.

2.3. Behavior of attackers

We tried to identify who are the intruders. Either they are humans, or they are robots which reproduce simple

behaviors. During our observation period, for 24 intrusions upon 38, intruders have made mistakes when typing

commands. So, it is very likely that such activities are carried out by humans, rather than robots. When an

intruder has not make any mistake, we analysed how the data were transmitted from the attacker machine to the

honeypot on the TCP connection. Thanks to this method, we also concluded that intruders are human being.

In a general way, we have noted three main activities of the intruders. The first one is launching ssh scans on

other networks from the honeypot. The honeypot is thus used as a rebound to start new attacks. The second type

of activity is launching irc botnet. Some examples are emech [12] and psyBNC. The binaries of these software

were regularly changed in crond or inetd which are well known binaries on Unix systems, in order to dissimulate

them. A small part of the intruders also tried to become root. They used rootkits that unfortunately failed on our

honeypot.

Intruders can be classified in two main categories. The most important one is relative to script kiddies. They are

inexperienced hackers who use programs found on the Internet without really understanding how they work. The

next category represents intruders who are more dangerous, named ``black hat'', that can make serious damage

on systems because they are security experts. The intruders we have observed are most of the time of the first

category. For example, many of them don't seem to really understand the Unix file access rights and some of

them try to kill the processes of other users. Some intruders do not even try to delete the file containing the

history of their commands or do not try to deactivate this history function. Upon 38 intrusions, only 14 were

cleaned by the intruders (11 have deactivated the history function and 3 have deleted the history file). This

means that 24 intrusions left behind them a perfectly readable summary of their activity within the honeypot. No

intruder has tried to check the presence of VMware software, which may be a sign that the intruder is observed.

24

None of the publicly known methods to identify the presence of VMware software [5][4] was tested. This

probably means that the intruders are not experienced hackers.

Bibliography

[1] Home page of Leurré.com: http://www.leurre.org.

[2] E. Alata, M. Dacier, Y. Deswarte, M. Kaaniche, K. Kortchinsky, V. Nicomette, Van Hau Pham and

Fabien Pouget. Collection and analysis of attack data based on honeypots deployed on the Internet. In

QOP 2005, 1st Workshop on Quality of Protection (collocated with ESORICS and METRICS), September

15, 2005, Milan, Italy, Sep 2005.

[3] Michael Bailey, Evan Cooke, Farnam Jahanian and Jose Nazario. The Internet Motion Sensor - A

Distributed Blackhole Monitoring System. In NDSS, 2005.

[4] Joseph Corey. Advanced Honey Pot Identification And Exploitation. In Phrack, Volume 0x0b, Issue 0x3f,

Phile #0x01 of 0x0f, 2004, http://www.phrack.org.

[5] T. Holz, and F. Raynal. Detecting honeypots and other suspicious environments. In Systems, Man and

Cybernetics (SMC) Information Assurance Workshop. Proceedings from the Sixth Annual IEEE, pages 29-

36, 2005.

[6] http://www.dshield.org. Home page of the DShield.org Distributed Intrusion Detection System,

http://www.honeynet.org.

[7] M. Dacier, F. Pouget, and H. Debar. Honeypots: practical means to validate malicious fault assumptions.

In Dependable Computing, 2004. Proceedings. 10th IEEE Pacific Rim International Symposium, pages

383-388, Tahiti, French Polynesia, 3-5 March 2004.

[8] F. Pouget. Publications web page: http://www.eurecom.fr/~pouget/papers.htm.

[9] Fabien Pouget, Marc Dacier, and Van Hau Pham. Understanding threats: a prerequisite to enhance

survivability of computing systems. In IISW'04, International Infrastructure Survivability Workshop 2004,

in conjunction with the 25th IEEE International Real-Time Systems Symposium (RTSS 04) December 5-8,

2004 Lisbonne, Portugal, Dec 2004.

[10] Fabien Pouget, Marc Dacier, and Van Hau Pham. Leurre.com: on the advantages of deploying a large

scale distributed honeypot platform. In ECCE’05, E-Crime and Computer Conference, 29-30th March

2005, Monaco, Mar 2005.

[11] CAIDA Project. Home Page of the CAIDA Project, http://www.caida.org.

[12] EnergyMech team. EnergyMech. Available on: http://www.energymech.net.

[13] Inc. VMware. Available on: http://www.vmware.com.

25

Identifying the Source of Messages in

Computer Networks
Marios S. Andreou

University of Newcastle upon Tyne

Abstract

A brief overview of the mechanisms relevant to the creation and use of network messages carrying forged

address data, with a synopsis of current proposals for countering this threat (IP traceback). A proposal is made

for the investigation of message traceback in the context of other network environments, typical to intranets,

(such as switched Ethernet), as an extension of current work

1. Introduction

Modern computer networks are predominantly built with “packet switched” (aka “connectionless”) delivery

services; the Internet Protocol for example provides a connectionless service. The nature of a such services is

that each message is routed independently of other messages forming part of the same exchange. No information

regarding a message is stored on the relay machine; instead, the complexity of the delivery service is pushed to

the edge of the network (and specifically to the layered network services of the sending and receiving machines).

In other words, the delivery service itself is stateless.

Thus, assuming there is correct delivery of the message, and restricting our view only to the delivery service, the

recipient has no means with which to verify that the source address of a message actually belongs to the

originating machine. Specially crafted messages that contain false address data are sometimes termed “spoofed”

messages, and they can facilitate a number of malevolent objectives.

26

A fabricated message introduced to the delivery service will not automatically contain the higher level data

expected by the recipient network service(s). Instead, the attacker must make an informed guess as to what data

each of the receiving machine’s networking layers expects and fabricate the message accordingly. The

magnitude of this challenge depends on the scenario in which the spoofed message is to be used. Generally, we

can consider three cases; a single initial message, a single message as part of an ongoing exchange, and multiple

successive messages. The second and third cases pose a bigger problem for the attacker, as she will need to

fashion the forged message appropriately for the receiving machine to accept it as “legitimate”.

We can also distinguish between blind and non – blind attacks. Typically, in any forged message scenario, three

entities exist; the attacker, the victim, and the tertiary (masqueraded) host. When a forged message is replied to,

it is sent to the source address reported in the original “spoofed” message. In a “blind” scenario, the attacker

cannot trivially access these replies, complicating his task of fabricating a subsequent message. If however the

attacker is on the same subnet as the machine whose address was used (i.e. the tertiary masqueraded host) then

she can more easily access the victim’s responses to that machine, and so we have “non blind spoofing”

(assuming a traditional shared medium network, such as “classic” Ethernet).

2. Consequences

Whilst obscuring the source of potentially incriminating messages is advantageous in itself, IP packets with

forged addresses have been used to facilitate a number of malevolent objectives. Spoofed messages are mainly

associated with Denial of Service (DOS) attacks. These attacks deny service by specifically targeting a

vulnerable process so that the services provided by that process (or by other, dependant processes) are

discontinued or at least hindered. A slight variation is a Distributed DOS (DDOS), in which the source of the

attack is not a single machine but any number of machines under the direction of the attacker. There are a

number of illustrative examples where spoofed messages have been used to mount DOS attacks, such as Land
[Lan97], La-Tierra [Huo98], Smurf [Smu97], ARP [Spu89], ICMP [Bel01], and of course SYN Flood [Syn00]. An important point

to be made is that all these attacks fall at the “easier” end of the scale (from the attacker’s point of view) as they

are all instigated by a single initial spoofed packet. Spoofed messages can and have also be used for other

purposes. An example is the elaborate “idle scan” method which allows an attacker to scan for open ports on a

potential victim without sending any packets containing its true source I.P. address [San98].

3. Solutions

Varied suggestions have resulted from work in this area. “Defeating” spoofed messages can mean a number of

things and proposals typically fall into the categories of prevention, detection and deterrence.

27

Perhaps the best preventive measures are to improve and strengthen the affected network protocols themselves
[Bel89]. However, the difficulties associated with homogeneous deployment and implementation (e.g. agreeing on

new standards, or the costs involved in upgrading/exchanging hardware) assure their practical infeasibility in the

shorter term.

There are many proposals for implementing systems that facilitate the determination of the “true” source IP

address of a packet (or stream of packets), possibly to a known degree of accuracy. These are commonly referred

to as “IP Traceback” systems and with respect to “defeating” spoofed messages are regarded as a promising area

of research. A traceback system capable of accurate and timely discovery of the true source address of a given

packet could be used as a deterrent of malicious network activity. Lee et al envisage IP traceback having a

number of applications, such as attack reaction, attack prevention, and establishment of liability (even

prosecution) [Lee01].

4. Current and Future Plans

A major shortcoming of current proposals is that they can only trace as far back as the first router connecting to

the attacker’s subnet hardware. Typically, the network hardware from which an attack originated may not even

use IP (e.g. switched Ethernet). Oe et al consider the problem with implementing IP traceback to be the

composition of the Internet, as interconnected autonomous systems (AS)[Oe03]. Each connected network is

independently and uniquely architected, implemented and administered. They thus propose a two-part solution to

the IP traceback problem, modelled after the Internet routing hierarchy (i.e. Exterior and Interior gateway

protocols). The two part traceback architecture is further explored and developed by Hazeyama et al [Haz03], who

distinguish between interdomain and intradomain IP traceback. This decoupling allows the expression (and

subsequent satisfaction) of the unique requirements for intradomain traceback (i.e. within an autonomous

system). For instance, “precision” requirements are greater within the AS (in that you ultimately aim to discover

a single originating machine address). Hazeyama et al make the observation that in the case of DOS style

attacks, traffic flows are typically greater around the victim than around the attacker. Thus, approaches such as

link testing or probabilistic approaches such as packet marking and messaging, are unsuitable for tracing within

the originating AS. Their proposal extends traceback to level 2 of the OSI network stack, which stores identifiers

together with packet audit trails on gateway (or leaf) routers [Haz03].

The inter/intra network traceback approach is very interesting and lends a greater degree of credibility to the

ultimate goal of tracing spoofed messages to their actual source. This approach realises the limitations of current

inter-network traceback proposals, whilst recognising their importance in determining the source network.

Given the heterogeneity of private networks connected to the Internet, an intranet traceback system will need to

be tailored to that network (or at least to that network type). This intranet traceback system will need to provide

an interface to an inter-network traceback system, with the two systems together providing the end to end

28

message traceback. Aside from tracing network attacks, such as system would be a useful added security

measure for an organisation, and in legal terms affords the ability to establish individual liability. It is typical that

some form of security related audit on network traffic is already implemented in most existing networks, though

they may not currently maintain state regarding traffic origins.

Two switched Ethernet computer clusters at the School of Computing Science will serve as the subject for the

exploration of intranet message traceback. The Rack and Mill clusters each consist of two CISCO switches

connected by a gigabit Ethernet link. The sixty odd machines in each cluster are provisioned across the two

switches (the Rack has Windows boxes and the Mill Linux). A dedicated linux machine has been installed on

one of the Mill switches, to serve as the spoofing node. One of the ultimate objectives of this investigation is to

achieve a better understanding of the traceback problem through its generalisation (i.e. consider message

traceback and not just IP packet traceback).

5. References

[Bel89] Bellovin, S., Security Problems in the TCP/IP Protocol Suite, Computer Communication

Review, 19(2), p.32-48, 1989.

[Bel01] Bellovin, S., Leech, M., Taylor, T., ICMP Traceback Messages, IETF Internet Draft, October

2001.

[Bur00] Burch, H., Cheswick, B., Tracing Anonymous Packets to Their Approximate Source,

Proceedings 14th Sys. Admin Conference (LISA 2000), p.319-327, December 2000.

[Haz03] Hazeyama, H., Oe, M., Kadobayashi, Y., A Layer-2 Extension to Hash Based IP Traceback,

IEICE Transactions on Information and Systems, E86(11), p.2325, November 2003.

[Huo98] Huovinen, L., Hursti, J., Denial of Service Attacks: Teardrop and Land,

http://users.tkk.fi/~lhuovine/study/hacker98/dos.html

[Lan97] “m3lt”, The LAND Attack (IP DOS), http://www.insecure.org/sploits/land.ip.DOS.html, 1997.

[Lee01] Lee, S.C., Shields, C., Tracing the Source of Network Attack: A Technical, Legal and Societal

Problem, Proceedings 2001 IEEE Workshop on Information Assurance and Security, p.239-246,

June 2001.

[Oe03] Oe, M., Kabobayashi, Y., Yamaguchi, S., An Implementation of a Hierarchical IP Traceback

Architecture, Workshop Proceedings IEEE Symposium on Applications and the Internet 2003,

p.250, January 2003.

[San98] Sanfillipo, S., New TCP Scan Method, http://seclists.org/lists/bugtraq/1998/Dec/0079.html,

1998.

29

[Sav01] Savage, S., Wetherall, D., Karlin, A., Anderson, T., Network Support for IP Traceback,

IEEE/ACM Transactions on Networking, 9(3), p226-237, 2001.

[Smu97] “Tfreak”, Smurf multi broadcast ICMP attack,

http://seclists.org/lists/bugtraq/1997/Oct/0066.html, 1997.

[Sno01] Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Schwartz, B., Kent,

S.T., Strayer, W.T., Single Packet IP Traceback, IEEE/ACM Transactions on Networking, Vol

10(6), p.721-734, December 2002.

[Spu89] Spurgeon, C., Broadcast Storms and Packet Avalanches on Campus

Networks,http://madhaus.utcs.utoronto.ca/cns/ftp/doc/introductory_documents/storms.txt, 1989.

[Sto00] Stone, R., Centertrack: An IP Overlay Network for Tracking DOS Floods, Proceedings 9th

USENIX Security Symposium, US

[Syn00] CERT, CERT® Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing Attacks,

http://www.cert.org/advisories/CA-1996-21.html, November 2000.

30

Vulnerability Assessment Through Attack Injection

João Antunes

jantunes@di.fc.ul.pt

University of Lisboa, Portugal

Abstract

Our reliance on computer systems for everyday life activities has increased over the years, as more and more

tasks are accomplished with their help. The increasing complexity of the problems they address also require the

development of more elaborated solutions. So, applications tend to become larger and more complex. On the

other hand, the ever present tradeoff between time to market and thorough testing puts pressure on the quality of

the software. Hence, applications tend to be released with little testing, so software bugs are continuously

detected afterwards, resulting in security vulnerabilities that can be exploited by malicious adversaries and

compromise the systems’ security. The discovery of security vulnerabilities is then a valuable asset in the

development of dependable systems. AJECT is presented as a new tool for vulnerability assessment, without

requiring access to the source code or any updated database vulnerability. Preliminary experimental results in

IMAP servers showed that AJECT was able to discover not only all known vulnerabilities, but also a previously

unknown one.

1. Overview

Software evolved over the years. It became more useful and easier to make, but on the other hand it

also became more complex, requiring bigger development teams. This increasing complexity has lead

to the creation of larger applications with much more lines of code. Also, the competitive software

market requires applications to be deployed with full functionality as soon as possible. Hence,

31

applications tend to be released with little testing, so software bugs are continuously detected

afterwards. These software bugs have also evolved and are more sophisticated. There are now many

new and different ways in which software could be exploited.

Also, the nature of the software and reliance we place in it makes us vulnerable to any deviation of

its correct behaviour, such as in safety-critical systems or e-banking. Dependability in this systems is of

paramount importance and a security compromise potentially catastrophic.

If we could develop error-free software, vulnerabilities would not exist and dependability would

surely be increased. Actually, without vulnerabilities applications could not be exploited. So,

theoretically, if we could devise methods and means to remove these vulnerabilities or even prevent

them to appear in the first place, we should be able to create dependable software with inviolable

security properties.

We propose attack injection with extended monitoring capabilities as a method for detecting

vulnerabilities. In this method we try to identify invalid software states just like an attacker would –

trial and error, by consecutively attacking its target. This means we are not dependent on a database of

known vulnerabilities, but rather we rely on a more generic set of tests. Through careful and automated

monitoring we can later analyze the results of the attacks and pinpoint the exact vulnerability. This

allows us to detect known and unknown vulnerabilities in an automated fashion.

2. Attack Injection

The AVI (attack, vulnerability, intrusion) composite fault model introduced in [1, 6] helps us to

understand the mechanisms of failure due to several classes of malicious faults. This specialization of

the well-known sequence of fault Æ error Æ failure applied to malicious faults, limits the fault space

of interest to the composition (attack + vulnerability) Æ intrusion. Attacks are malicious activities

perpetrated by an adversary with the objective of violating the system’s security properties. Coding or

configuration errors are other type of faults which may insert vulnerabilities in the system. These faults

can be introduced accidentally or deliberately, with or without malicious intent, but they only

compromise the system if an attack successfully activates a vulnerability, hence leading to a intrusion.

This further step towards failure is normally succeeded by the production of an erroneous state in the

system (e.g., a root shell, or new account with root privileges), and if nothing is done to process the

error, a failure will happen.

We propose to emulate an attacker’s behaviour in order to activate the existing vulnerabilities,

therefore detecting them. This idea was materialized in an attack injection tool called AJECT. This tool

emulates the behaviour of an external adversary attempting to cause a failure in the target system. First,

it generates a large number of attacks which it directs against the target’s interface. These attacks are

expected to be deflected by the validation mechanisms implemented in the interface, but if some of

them succeeds in exploiting a vulnerability, an attack/vulnerability combination was found. Some

conditions can amplify the attack’s probability of success, for example: a correct understanding of the

interaction protocol employed by the target facilitates the creation of more efficient attacks (e.g.,

reduces the number of random tests); and a good knowledge about what type of vulnerabilities appear

more frequently also helps to prioritize the attacks.

32

3. Attack Monitoring

Though attack injection is one of the most important aspects of the AJECT tool, it also has some strong

monitoring capabilities. One does not only needs to inject attacks in the target’s system, it must also

observe and record its reaction. This is essential for the purpose of automating an effective detection of

vulnerabilities.

Thus, while attacks are being carried out, AJECT monitors how the state of the target system is

evolving, looking for errors or failures, tracing the process execution, or its resource usage. Whenever

one these problems is observed, it indicates that a new vulnerability has potentially been discovered.

Depending on the collected evidence, it can indicate with more or less certainty that a vulnerability

exists. For instance, there is a high probability of the presence of a vulnerability if the system crashes

during (or after) the attack – this attack at least compromises the availability of the system. On the

other hand, if what is observed is an abnormal resource usage, such as the creation of a large file, or an

increasing memory allocation, though it might not be a vulnerability it still needs to be further

investigated.

4. Attack Tests

The success of the injections depends greatly on the attacks themselves. If one had access to the source

code, one could generate carefully crafted attacks, in order to get a maximum test coverage [8, 7, 4].

But that would be human dependent and an intensive task to undertake. One could also inject

previously created attacks for known vulnerabilities from a knowledge database, such as the

vulnerability scanners [2, 3, 5]. Only that would merely enable us to detect known vulnerabilities,

leaving the application susceptible to new ones. It would also require a continuously updated database.

Since AJECT is neither dependent on the application’s source code, nor on a database of known

vulnerable versions and respective exploits, it is not limited to previously detected vulnerabilities and

can be used with virtually any server application. Then how is the attack generation performed?

There’s almost an infinite number of combinations that can constitute an attack. One can always stress

testing each and every protocol message, with random and almost infinite permutations. But how can

one generate a more manageable number attacks, maintaining a large overall coverage? AJECT relies

its detection capabilities on a more generic set of tests, such as value, syntax, or information disclosure

tests. This tests are specific enough so that we don’t go to the point of testing all possible combinations

(i.e., only experiment with a careful subset of malicious strings as opposed to all possible character

combinations), but are also very generic as to create a large number of different attacks, thus achieving

a larger coverage (i.e., test the syntax of the protocol by injecting invalid messages, permutating,

adding, or removing its fields).

33

5. Conclusions and Future Work

AJECT was experimented against different IMAP servers in order to evaluate its method for

vulnerability assessment. The servers were chosen from the reported vulnerabilities in several bugtraq

and security sites. There is at least one attack that can exploit each of these vulnerable servers, which

can be manually confirmed by the respective posted exploit. The objective of the experiment was that

from all the attacks generated by AJECT’s tests, at least one should be able to replicate the exploit’s

effects, or some server’s reaction that could point out the existence of a vulnerability. AJECT

successfully detected the 2005’s vulnerabilities of the following products: MailEnable Professional and

Enterprise Edition, GNU Mailutils, TrueNorth eMailServer, Alt-N MDaemon, University of

Washington Imap, Floosietek FTGate, and Qualcomm Eudora WorldMail Server. The vulnerabilities

found ranged from buffer overflows to information disclosure.

As an unplanned secondary objective, AJECT was also able to discover a new and unknown

vulnerability in one of the servers, thus confirming its usefulness. A specific IMAP command in the

last version of TrueNorth eMailServer identified a buffer overflow vulnerability.

Currently, we are investigating new ways in generating efficient attacks and enhancing its

monitoring capabilities. Perhaps access to the server’s source code could leverage AJECT’s

capabilities, allowing us to reckon, and improve, its test coverage.

References

[1] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte, K. Kursawe, J. C. Laprie,

D. Powell, B. Randell, J. Riordan, P. Ryan, W. Simmonds, R. Stroud, P. Veríssimo,

M. Waidner, and A. Wespi. Conceptual Model and Architecture of MAFTIA. Project MAFTIA

deliverable D21. Jan. 2002. http://www.research.ec.org/maftia/deliverables/D21.pdf.

[2] D. Farmer and E. H. Spafford. The COPS security checker system. In Proc. of the Summer

USENIX Conference, pages 165–170, June 1990.

[3] FoundStone Inc. FoundStone Enterprise, 2005. http://www.foundstone.com.

[4] E. Haugh and M. Bishop. Testing C programs for buffer overflow vulnerabilities. In Proc. of

the Symposium on Networked and Distributed System Security, Feb. 2003.

[5] Tenable Network Security. Nessus Vulnerability Scanner, 2005. http://www.nessus.org.

[6] P. Veríssimo, N. F. Neves, and M. Correia. The middleware architecture of MAFTIA: A

blueprint. In Proceedings of the Third IEEE Information Survivability Workshop, Oct. 2000.

[7] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A static vulnerability scanner for C

and C++ code. In Proc. of the 16th Annual Computer Security Applications Conference, Dec.

2000.

[8] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards automated detection of

buffer overrun vulnerabilities. In Proc. of the Network and Distributed System Security Symposium,

Feb. 2000.

34

Adaptive Security

Christiaan Lamprecht

School of Computing Science

University of Newcastle upon Tyne

C.J.Lamprecht@ncl.ac.uk

Security that can change itself, or the environment, in response to system changes or threats

has the potential to be a more effective security solution than current static solutions. This

paper shows that context aware security is at the forefront of such developments and in

particular focuses on resource aware security. It also proposes considerations for future

research.

Introduction

The research area of Adaptive Security recognises the fact that “one size fits all” security solutions fail to

address the complexity of modern day computing systems and the environments in which they operate. The

solutions lack the desired expressiveness to take relevant environmental factors into account, the desired

flexibility to accommodate for various runtime environmental changes and the ability to remain accurate and

relevant as the security requirements of the system change over time. Appropriate and timely security adaptation

based on these factors are the concern of Adaptive Security.

In this paper we will first provide an overview of current Adaptive Security research, then examine our particular

focus area and finally provide some details on future work and considerations.

1. Context aware adaptive security

Adaptive Security aims to provide timely responses in anticipating, effectively controlling the effects and

initiating appropriate countermeasures to changes in the system or its environment. Research solutions in the

area endeavours to provide effective automation of this process by considering contextual information that can

be exploited to deal with the demanding requirements of the domain of application.

Examples of such research include adaptive access control policies where policies incorporate application

specific information in policy decisions [Bez2002], adaptive intrusion detection systems which allow individual

35

trust management to conserve processor resources [Venk1997], adaptive agents where the system itself moves

between different domains and has to detect and adapt to various malicious scenarios [Alam2003], adaptive

security in resource constrained networks where appropriate security protocols are selected at runtime based on

the current network conditions [Chigan2005][Schn1998] and threats [Hinton1999], adaptive security

infrastructures (ASI) where the ASI consists of many security systems which cooperate to ensure minimal policy

conflicts [Marcus2003][Shnitko2004] and many more.

2. Resource aware adaptive security

Resource availability, in particular processing resources, is a contextual factor which is often overlooked during

the adaptation process. Changing the security mechanisms deployed can have a significant impact on the

performance of a system. This is often true as these mechanisms are typically computationally intensive and

consequently resource hungry processes. This is of particular concern for systems with real-time constraints such

as; stock trading or online bidding services where the nature of the data accessed imposes real-time constraints

on the transaction, military systems where the timely arrival of essential data is a significant cost factor in

deciding the level of security required or embedded safety critical systems (such as cars, airplanes, etc.) where

task deadlines are of particular concern. In such systems the demand security places on the system resources

need to be quantified and traded off against the available resources to provide acceptable functionality as well as

an appropriate level of security.

Bearing in mind the aforementioned complexity of modern day computing systems we believe that such a trade-

off could also provide significant benefits for everyday systems which do not necessarily have such rigorous

real-time constraints. Though correct system functionality is not at stake, security still has a significant impact on

the performance of the system. This is of particular concern as it affects, among other things, the quality of

service (QoS) provided as well as the extent of service exploitation in terms of the maximum number of

customers that can be supported at any one time.

Adaptive security, based on a security-performance trade-off, shows potential in providing adequate security

based on the current system and client needs. By varying the level of security appropriately benefits could

potentially include consistent QoS provided to customers even at peak system loads, support for more customers

at peak loads, support for clients on various resource constrained devices, improved security when system load is

low and additional system resilience against unanticipated changes in the environment (e.g. Denial of Service

(DoS) attacks, resource failure and changes in system load) This is in sharp contrast to pre-deployment decisions

which, considering the complexity of the system, often fail to take into account all the environmental factors that

will influence the system and so either burden the system with unneeded security or expose it through inadequate

security measures.

Care has to be taken however that adapting security solely based on system performance does not overlook the

principle purpose of security in that it keeps the system secure! An attacker could mount a preliminary DoS

attack to burden the system and thus, in order to maintain QoS levels, force the system to lower the security and

therefore potentially assist the eventual attack. Additional steps need to be taken in order to restrict the extent of

adaptivity based on, for example, minimum security requirements, data worth, data channel exposure, client

requirements, threats etc… Further considerations are mentioned in the Research Issues section.

36

3. Current research

Though many areas of research do consider performance as an important factor and so try to make security

mechanisms more efficient, they do not explicitly consider its cost and the effect it has on the system or service

as a whole. Examples of research which address some of these issues include [Schn1998] which investigates

how various authentication heuristics influences the timely signing/verifying of streamed data over a network for

clients with varying resource availabilities. [Cho2005] models, using stochastic Petri nets, an intrusion detection

system in a wireless setting and investigates how often intrusion detection should occur by considering the mean

time to security failure and the cost of changing the group key when malicious nodes are evicted. [Son2000]

considers a few levels of authentication and confidentiality guarantees and how to most effectively adapt the

application of these to meet transaction deadlines for real-time transactions. [Chigan2005] explores the cost of

using particular security protocol sets (at different layers of the stack), chosen due to threats, under different

node mobility patterns in a simulated ad hoc network environment.

The above mentioned research each address a small subset of the related issues to various degrees and depths.

Much potential research still remains.

Focus

Our particular focus will be on explicitly reasoning about the effect security has on the system in order to aid in

satisfying some higher level QoS goals. This will be achieved through quantifying some security-performance

trade-off.

High level example;

“Provide an appropriate QoS level to clients whilst maintaining security at the maximum level the system can

afford.” In this example average client QoS, i.e. response time, will be maintained above X by varying the

security level, i.e. encryption level, in response to user load.

100%0%

QoS

User load

IDEA

No encryption

DES

Cryptography

X: Desired QoS

Triple DES

37

The graph above shows how transaction response time, under three encryption protocols and no encryption,

would typically be affected by user load. Triple DES is the most secure and the most resource hungry whilst “no

encryption” provides no security but requires no additional resources.

The above graph shows how a suitable average client QoS can be maintained by changing the encryption to one

which is requires less resources before the QoS guarantee is violated.

Of course it would be desirable not to include “no encryption” in the set of protocol choices. The research issues

section below highlights some issues which require careful consideration.

4. Research issues

To successfully address all the issues relating to our research focus, several categories of research issues need to

be considered:

• Trade-off metrics

� Metrics for security

� Metrics for; system resource availability, value of data, real-time constraints, client resource

availability, threats, etc…

• System architecture

� Seamlessly changing the security protocol at runtime is non-trivial and also incurs an additional,

though temporary, resource cost which need to be considered.

� Performance of particular security protocol implementations might bear little resemblance on

their expected cost. [Lamp2006]

100%0%

QoS

User load

Adaptive

Adaptive cryptography

X: Desired QoS

Triple DES

DES IDEA

No encryption

38

• Modelling formalisms will play a large role in the types of deductions that can be made about the

system being modelled.

� Probabilistic modelling

� Formal modelling

References

[Alam2003] Alampalayam S.P., Anup Kumar, An adaptive security model for mobile agents in wireless

networks, Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE, Volume 3, 1-

5 Dec. 2003 Page(s):1516 - 1521 vol.3, Digital Object Identifier

10.1109/GLOCOM.2003.1258491

[Bez2002] Konstantin Beznosov, Object Security Attributes: Enabling Application-specific Access Control

in Middleware, In proceedings of the 4th International Symposium on Distributed Objects &

Applications (DOA) pp. 693-710, Irvine, California, October 28 - November 1, 2002

[Chigan2005] Chunxiao Chigan, Leiyuan Li and Yinghua Ye, Resource-aware self-adaptive security

provisioning in mobile ad hoc networks, Wireless Communications and Networking Conference,

2005 IEEE Volume 4, 13-17 March 2005 Page(s):2118 - 2124 Vol. 4, Digital Object Identifier

10.1109/WCNC.2005.1424845

[Cho2005] Jin-Hee Cho and Ing-Ray Chen, On design tradeoffs between security and performance in

wireless group communicating systems, Secure Network Protocols, 2005. (NPSec). 1st IEEE

ICNP Workshop, 6 Nov. 2005 Page(s):13 - 18 Digital Object Identifier

10.1109/NPSEC.2005.1532047

[Hinton1999] Hinton H., Cowan C., Delcambre L. and Bowers S., SAM: Security Adaptation Manager,

Computer Security Applications Conference, 1999. (ACSAC '99) Proceedings. 15th Annual, 6-

10 Dec. 1999 Page(s):361 - 370 Digital Object Identifier 10.1109/CSAC.1999.816047

[Kep2003] Jeffrey O. Kephart, David M.Chess, The vision of Autonomic computing, IBM Thomas J.

Watson Research Center, Published by the IEEE Computer Society,0018-9162, pages 41-50, Jan

2003

[Lamp2006] C. Lamprecht, A. van Moorsel, P. Tomlinson and N. Thomas, Investigating the efficiency of

cryptographic algorithms in online transactions, International Journal of Simulation Systems,

Science & Technology, Special issue on Performance Engineering, Vol.7 No. 2, pages 63-75,

February 2006.

[Marcus2003] Marcus L., Local and Global Requirements in an Adaptive Security Infrastructure, In

Proceedings of International Workshop on Requirements for High Assurance Systems,

September 2003.

39

[Schn1998] Schneck P.A. and Schwan K, Dynamic authentication for high-performance networked

applications Quality of Service, (IWQoS 98) 1998 Sixth International Workshop, 18-20 May

1998 Page(s):127 - 136, Digital Object Identifier 10.1109/IWQOS.1998.675229

[Shnitko2004] Shnitko A, Practical and Theoretical Issues on Adaptive Security, Proceedings of FCS'04

Workshop on Foundations of Computer Security, Workshop on Logical Foundations of an

Adaptive Security Infrastructure, June 2004.

[Son2000] Son S.H., Zimmerman R and Hansson J., An adaptable security manager for real-time

transactions, Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference, 19-

21 June 2000 Page(s):63 - 70, Digital Object Identifier 10.1109/EMRTS.2000.853993

[Venk1997] Venkatesan, R.M. and Bhattacharya, S., Threat-adaptive security policy, Performance,

Computing, and Communications Conference, 1997. IPCCC 1997., IEEE International, 5-7

Feb. 1997 Page(s):525 – 531, Digital Object Identifier 10.1109/PCCC.1997.581559

40

ScriptGen: using protocol-independence to build middle-

interaction honeypots

Corrado Leita - Institut Eurécom

Introduction

One of the most recent and interesting advances in intrusion detection consists in the honeypot technology. As

the word suggests, honeypots aim at attracting malicious activity, in order to study it and understand its

characteristics. L.Spitzner in [1] defined a honeypot as "a resource whose value is being in attacked or

compromised". From a practical point of view, honeypots are hosts not assigned to any specific function inside a

network. Therefore, any attempt to contact them can be considered as malicious. Usually, traffic observed over

any network is a mixture of "normal" traffic and "malicious" one. The value of a honeypot resides in the ability

to filter out the first kind, allowing to perform an in-depth study of the latter.

The main design issue in deploying honeypots is defining the degree of interaction allowed between the

honeypot and the attacking client. A possible choice might consist in allowing full interaction, using a real

operating system eventually running on a virtualization system such as VMware1 (high interaction honeypots).

Such a solution allows the maximum degree of verbosity between the attacker and the honeypot. However, this

solution leads to a number of drawbacks. Since the honeypot is a real host, it can be successfully compromised

by an attack. After a successful exploit, an attacker can even use this host as a relay to perform attacks against

other hosts of the network. This underlines the maintenance cost of the high interaction honeypots: these hosts

have to be kept under control in order to avoid being misused. Also, this solution is resource consuming: even

using virtualization softwares, the resource consumption of each deployed honeypot is high.

1 www.vmware.com

41

A less costly solution consists in using much simpler softwares than a whole operating system, mimicking the

behavior of a real host through a set of responders (low interaction honeypots). An example of these softwares is

honeyd [2]. Honeyd uses a set of scripts able to react to client requests and provide an appropriate answer for the

client. These scripts are manually generated, and require an in-depth knowledge of the protocol behavior. This

process is therefore tedious, and sometimes even impossible: the protocol specification may not be publicly

accessible. As a result, not many scripts are available and their behavior is often oversimplistic. This

significantly decreases the amount of available information. For many protocols, no responder script is available

and therefore the honeypot is only able to retrieve the first client request, failing to continue the conversation

with the client. Many known exploits send the malicious payload only after a setup phase that may consist of

several exchanges of request/replies inside a single TCP session. Therefore in these cases low-interaction

honeypots do not collect enough information to be able to discriminate between the different malicious activities.

1. The ScriptGen idea

The previous section clearly identifies a trade-off between cost and quality of the dialogs with the client. Both

high interaction and low interaction solutions provide clear advantages and not negligible disadvantages. For this

reason, we tried to find a hybrid solution able to exploit some of the advantages of both approaches. This led to

the development of the ScriptGen approach.

The main idea is very simple: to observe the behavior of a real server implementing a certain protocol, and use

these observations as a training set to learn the protocol behavior. In order to be able to handle also those

protocols whose specification is not publicly available, we target a powerful and apparently ambitious objective:

that is, we aim at complete protocol independence. We do not make any kind of assumption on the protocol

behavior, nor on its semantics, avoiding to use any kind of additional context information. We parse as input an

application level dialog between a client and a server as a simple stream of bytes, and we build from this a

representation of the protocol behavior, performing an inference of some of the protocol semantics.

It is important to notice that we do not pretend to be able to learn automatically the whole protocol language: this

would be probably impossible. Our goal is more modest, and consists in correctly carrying on conversations with

attack tools. This dramatically simplifies the problem since the requests are generated by deterministic automata,

the exploits. They represent a very limited subset of the total input space in terms of protocol data units, and they

also typically exercise a very limited number of execution paths in the execution tree of the services we want to

emulate.

ScriptGen is a framework composed of two different functional parts:

• An offline analysis, that consists in inferring the protocol semantics and behavior starting from samples

of protocol interaction.

• An online emulation, that uses the informations inferred in the preceding phase to carry on conversations

with the clients in the context of a honeypot. ScriptGen is also able to detect in this phase deviation from

the already known behaviors, triggering alerts for new activities and reacting to them.

42

2.1 The stateful approach and the need for semantic inference

Starting from samples of conversation with a real server implementing the protocol, ScriptGen must produce a

representation of the protocol behavior to be used in the emulation phase. ScriptGen follows a stateful approach,

representing this information through a finite state automata. Every state has a label and a set of outgoing edges,

leading to future states. Each of these edges is labeled too. During emulation, when receiving a request the

emulator tries to match it with the transition labels. The transition that matches will lead to the next future state,

and state's label will be used to generate the answer to be sent back to the client. The state machine therefore

represents protocol's language as observed in the samples.

Figure 1 – Semantic abstraction

Building such a state machine without any knowledge about semantics would not generate useful emulators. The

requests would be seen as simple streams of bytes, and every byte would receive the same treatment. Referring

to the example shown in figure 1, two login requests with different usernames would lead to two different paths

inside the state machine. During emulation, a login request with a username never seen before would not find a

match.

The previous example is just one of the examples that show the need to rebuild some of the protocol semantics,

exploiting the statistical variability of the samples used for training. This is possible through the region analysis

algorithm, a novel algorithm that we developed and that is detailed in [3]. Region analysis allows, through

bioinformatics algorithms, to aggregate the requests into clusters representing different paths in the protocol

functionality. For each cluster, the algorithm produces a set of fixed and mutating regions. A fixed region is a set

of contiguous bytes in the protocol request whose content can be considered as discriminating from a semantic

point of view (referring to the previous example, the "LOGIN" command). A mutating region is a set of

contiguous bytes whose value has no semantic value (for instance, the username). The succession of fixed and

mutating regions generates regular expressions used as labels on the transitions to match the incoming requests,

taking into consideration a simple notion of semantics.

43

2.2 Intra-protocol dependencies

The semantic abstraction produced through the region analysis algorithm allows to detect mutating fields that do

not add semantic value to the client request. Some of those fields, however, incorporate a more complex

semantic value that cannot be detected by looking at the samples of client requests. For instance, many protocols

contain cookie fields: the value of these fields is chosen randomly by either the client or the server, and must be

repeated in the following messages of the protocol conversation. Two situations can be identified:

1. The client sets the cookie in its request, and the value must be reused in the server answer. In this case

the emulator must be able to retrieve the value from the incoming request and copy it in the generated

answer.

2. The server sets the cookie in its answer, and the client must reuse the same value for the following

requests to be accepted. From the emulator point of view, this does not generate any issue. The server

label will contain a valid answer extracted from a training file, using a certain value for the field. The

corresponding field in the client requests will be classified as mutating. This leads only to two

approximations: the emulator will always use the same value, and it will accept as correct any value used

by the client without discarding the wrong ones. These approximations might be exploited by a

malicious user to fingerprint a ScriptGen honeypot, but can still be considered as acceptable when

dealing with attack tools.

In order to deal with the first case, we introduced a novel protocol-agnostic correlation algorithm, that allows to

find content in the requests that always repeats in the answers. This process takes advantage of the statistical

diversity of the samples to identify cookie fields in the requests and consequently produce correct answers.

2.3 Inter-protocol dependencies

The protocol knowledge represented through the state machines mentioned before is session-specific: a path

along the state machine corresponds to the dialogue between a client and a server in a single TCP session.

Therefore, this choice builds a definition of state whose scope is bounded inside a single TCP session. This

might be oversimplistic.

For instance, many exploits consist in sending a set of messages towards a vulnerable port (A), taking advantage

of a buffer overflow to open another port (B) usually closed and run, for instance, a shell. Before sending the

messages to port A, these exploits often check if port B is open. If port B is already open, there is no reason to

run the exploit since probably somebody else already did it in a previous time. Limiting the scope of the state to

a single TCP session, the ScriptGen emulator would be forced to choose between two policies:

1. Port B is left always closed. In this case, the exploit will always fail and probably the attacker will

consider the system as patched, and therefore not interesting.

2. Port B is left always open. In this case, the exploit will never send the malicious payloads on port A, and

the honeypot will loose valuable information on the attack process.

Therefore, in order to maximise the amount of interesting information, port B should be opened only after

having seen a successful exploit on port A. To do so, ScriptGen infers dependencies between different sessions

44

observing the training samples. For instance, knowing that port B is normally closed, a SYN/ACK packet on that

port will generate a dependency with the previous client request on port A. That is, every time that the emulator

will reach the final state on port A that characterizes the exploit, will open port B mimicking the behavior of a

real host. This is achieved through an inference algorithm that, based on a set of simple rules such as the one

described before, finds these dependencies and represents them through signalling primitives between the

various states.

3 ScriptGen potential

The potentials of the ScriptGen approach are manifold.

• Increasing the length of the conversations with clients, ScriptGen allows to better discriminate between

heterogeneous activities. As mentioned before, often different activities share an initial portion of the

protocol functional path and therefore it is impossible to discriminate between them without carrying on

the conversation long enough. Thanks to the protocol independence assumption, ScriptGen allows to

achieve an high level of interaction with the client for any protocol in a completely automated and

protocol-agnostic way.

• ScriptGen is able to precisely identify deviations from the known protocol behavior. If the ScriptGen

emulator receives a request that does not match any outgoing transition for the current state, it can

classify it as a new activity, raising an alert: in fact, this means that it is something that was never seen

before. Also, if ScriptGen was able to build a training set for this activity, it would be able to refine the

state machine, thus its knowledge of the protocol behavior, learning how to handle this new activity.

This is indeed possible through the concept of proxying: when facing a new activity, ScriptGen can relay

on a real host, acting as a proxy and forwarding to the host the various client requests. These proxied

conversations are then used to build a training set, and refine the state machine in a completely

automated way. Also, thanks to the semantic inference, ScriptGen can also generate regular expressions

to fingerprint the new activities, automatically generating signatures for existing intrusion detection

systems.

From this short introduction, it is clear that ScriptGen is a completely innovative approach and a promising

solution for the development of the honeypot technology. This technology covers a variety of different domains,

ranging from bioinformatics, to clustering and data mining, to computer networks, to end up in intrusion

detection. It is therefore a vast field, most of which still needs an in-depth exploration leaving room to a number

of improvements.

Bibliography

[1] L. Spitzner, Honeypots: Tracking Hackers. Boston: Addison-Welsey, 2002.

[2] N. Provos, “A virtual honeypot framework,” in Proceedings of the 12th USENIX Security Symposium, pp.

1-14, August 2004.

[3] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script generation tool for honeyd,” in

Proceedings of the 21st Annual Computer Security Applications Conference, December 2005.

45

Early Warning System based on a distributed honeypot network

V.H. Pham, F. Pouget, M. Dacier

Institut Eurecom

2229, route des Crêtes, BP 193

06904, Sophia-Antipolis, France

{pham,fabien,dacier}@eurecom.fr

Recently, the network security field has witnessed a growing interest for the various forms of

honeypot technology. This technology is well suited to better understand, assess, analyze today's

threats [1-4]. In this paper, we will present a high level description of an Early Warning System

based on the Leurre.com project (a distributed honeypot network). The author continues the work of

a former PhD student in the context of his own thesis. The rest of the text is organized as follows:

the first section aims at presenting the Leurre.com project. Section 2 describes a clustering

algorithm used to provide aggregated information about the attack tools used by hackers. Section 3

offers some insight on the current work we are performing on top of this seminal work in order to

build a novel and lightweight Early Warning System.

1. Leurre.com project
The Leurre.com project is a worldwide honeypot network. We have deployed sensors (called

platforms) at different places on the Internet. Each platform is made of three virtual machines.

These machines wait for incoming connection and reply. Trafic generated is captured. At the

beginning we had only one platform running in France. By now, the system has grown up to 35

platforms in 20 different countries. The data captured then are sent daily to a central server hosted at

Eurecom Institut where we apply several techniques to enrich the data set. Leurre.com is a win-win

partnership project. Each partner provides us an old PC and four routable IP addresses. On our side,

we provide the software and the access to the whole data set captured during 3 years. Both sides

sign an NDA (Non Disclose Agreement) that ensures that neither the name nor the IP addresses of

ours partners or of the attackers are published.

The advantage of our approach is that it allows us to observe network traffic locally. This is not the

case neither of Dshield [15] nor of Network telescope [14] where people take log files of big

firewall or monitor traffic in a large range of IP addresses. The value of those systems resides in

their capacity to observe worm propagation, DoS...but they cannot tell the local characteristics of

the network traffic. We have showed in [17] the usefulness of such system in comparison with other

approaches. For conciseness, we do not mention all similar projects here. Interested reader can find

it in [10].

There are several partners who are working on our data set for their research. More information can

be found on http://www.leurrecom.org.

2. Existing Work

So far, we have collected data for more than 3 years. We have applied several methods to analyze

data set and we have had some early interesting results. In the following paragraphs, we will give a

survey on it.

2.1 Clustering algorithm

Data captured by Leurre.com network is in raw format. The packets by themselves do not contain

much information. This leads us to search for a more meaningful and easier to manipulate

represention. Indeed, raw data are reorganized into different abstracts levels by grouping packets

46

according to their origin and destination. Then we enrich the data set by adding geographical

information thanks to the Maxmind database [7] and Netgeo [6], domain name and OS

fingerprinting of each sources. To determine the OS of a source, we use passive OS fingerprinting

tools: ettercap [5], Disco [9] and p0f [8]. At this stage, we have the answers for questions such as

who attacks who? Which services are most attacked? Which domains hackers belong to....

However, we have no clear idea of which tools are mostly used. The answer for this question would

be very interesting. For this reason, we developed the clustering algorithm, which aims at

identifying attack tools used by hackers. The algorithm is presented in detail in [11]. Here we just

give a very high level of description. First of all, we define the fingerprint of an attack by using a

few parameters:

• The number of targeted virtual machines on the honeypot platform

• The sequence of ports

• The total number of packets sent by the attacking source

• The number of packets sent by an attacking source to each honeypot virtual machine

• The duration of the attack

• Ordering of the attack

• The packet content (if any) sent by attacking source.

Then we use certain techniques to group all sources that share the same fingerprint into a cluster

(see [12] for more information about this).

2.2 Correlative analysis

In the previous paragraphs, we group all the sources that share the same fingerprint. By digging into

the database, we found some relationships between these activity fingerprints. This led us to carry

out some knowledge discovery approach that enables us to automatically identify important

characteristics of set of attacks. To make a long story short, we summarize this lengthily process

by the few following steps:

• Manual identification of potentially interesting features.

E.g. manual inspection seems to reveal that some attacks originate from some specific

countries while others do not.

• Matrix of similarity of clusters

The underlying purpose of this step is to calculate the level of similarity between clusters

w.r.t a specific feature. In our context, we have applied some distance functions (Euclidean,

peak picking [12], SAX [12]...) to define the notion of similarity. The output of this step is a

matrix M expressing similarities between clusters. The values of M(i,j) represents the

similarity level between cluster i and cluster j.

• Extraction of dominant set

We see this matrix as an undirected edge-weighted graph G. A vertex V corresponds to a

cluster. The motivation for this step is to use existing algorithms to extract group of similar

clusters. In our case, we have applied the dominant-set extraction [13] algorithm to discover

set of cliques. Each clique C is a complete sub graph of G. It means that all vertices in C are

connected to each other. Because of the space limitation, we do not present how the

algorithm works. The interested reader can find this in [13].

3. Ongoing work

Although we have had some early interesting results but there are also open problems and work to

47

be improved. We will cite the most important open questions here and discuss the possible solutions

we are currently working on.

We begin by the small cluster problem. By applying the clustering algorithm, we have identified

interesting clusters. But besides that, we have also a lot (around 50000) small clusters. This means

that the fingerprint of these clusters is very specific. This can be due to several factors that we need

to analyze:

� Network disturbances

If packets are reordered or lost on their journey to the victim host, this cause the involved

source to be misclassified or to be stored in a cluster on its own. As these phenomenons are

quite frequent (above 10% sometimes) they can lead to the generation of a large amount of

meaningless clusters.

� Bad definition of source notion:

In our database, we define the notion of source. A source S is bound to an IP address, I,

which is seen sending packets to at least one of our platforms. All packets sent by that IP, I,

are linked to source S as long as no more than 25 hours elapse between received packets.

Packets arriving after a delay larger than 25 hours, will be bound to another source S'. We

have cases where attacking sources regularly send packets to our honeypots. The list of

destination ports targeted by the hacker, in this case, forms a repeated pattern. It would be

more reasonable if we say that repeated pattern is the signature of this kind of attacks. We

are working on discovering repeated patterns of long port lists. With this, we hope to be able

merge sources that have the same repeated pattern in port list but belong to different-small-

clusters.

4 Long-term goals

The final purpose of the author PhD thesis is to construct an early warning system based on the

above notion of clusters. The general model will look like figure 1. The system consists of a centre

server and several platforms. The functionality of each components are described as following:

� Platform consists of three subcomponents :

� Cluster detector aims at detecting attacks from hackers. The output will be a cluster

identification (if known cluster) or a new cluster. The output then is transferred to

Platform Profiler.

� Based on the attack profile of the platform and the volume of the attacks, Platform

Profiler may decide to raise an alert if the observed type, or volume, of attacks is

abnormal.

� Alert Manager sends regularly new cluster information to correlation center and

receives update profile information from correlation center.

� Correlation Center gathers alerts from several platforms and take appreciate actions.

Figure 1

48

Reference

[1] David Dagon, Xinzhou Qin, Guofei Gu and Wenke Lee, HoneyStat: LocalWorm Detection Using
Honeypots, Seventh International Symposium on Recent Advances in Intrusion Detection (RAID '04), 2004.
[2] Laurent Oudot, Fighting Spammers with Honeypots, http://www.securityfocus.com/infocus/1747, 2003.
[3] Lawrence Teo, Defeating Internet Attacks Using Risk Awareness and Active Honeypots, Proceedings of
the Second IEEE International Information Assurance Workshop (IWIA'04), 2004.
[4] Nathalie Weiler, Honeypots for Distributed Denial of Service Attacks, Proceedings of IEEE WET ICE
Workshop on Enterprise Security, 2002.
[5] Ettercap NG utility home page: http://ettercap.sourceforge.net.
[6] CAIDA Project. Netgeo utility -the internet geographical database.

URL:http://www.caida.org/tools/utilities/-netgeo/.
[7] MaxMind GeoIP Country Database Commercial Product. URL:http://www.maxmind.com/app/products.
[8] p0f Passive Fingerprinting Tool. URL:http://lcamtuf.coredump.cx/p0f-beta.tgz.
[9] Disco Passive Fingerprinting Tool. URL:http://www.altmode.com/disco.
[10] F. Pouget, M. Dacier, V.H. Pham. “Understanding Threats: a Prerequisite to Enhance Survivability of
Computing Systems”. In Proceedings of the International Infrastructure Survivability Workshop (IISW 2004),
Dec. 2004, Portugal.
[11] F. Pouget, M. Dacier. “Honeypot-based Forensics”. In Proceedings of the AusCERT Asia Pacific
Information Technology Security Conference 2004 (AusCERT2004), May 2004, Australia.
[12] F.Pouget. « Système distribué de capteur Pots de Miel : Discrimination et Analyse Corrélative des
Processus d'Attaques ». PhD thesis, Jan 2005, France.
[13] M.Pavan and M. Pelillo, « A new graph-theory approach to clustering and segmenation », in Proceding
of the IEEE Conference on Computer Vision and Pattern Recognition, 2003.
[14] CAIDA, the Cooperative Association for Internet Data Analysis web site: http://www.caida.org

[15] DShield Distributed Intrusion Detection System. URL:http://www.dshield.org.

[16] F. Pouget, T. Holz, « A Pointillist Approach for Comparing Honeypots », in Proc. Of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment. (DIMVA 2005), Vienna, Austria, July 2005.
[17] F. Pouget, M. Dacier, V-H Pham. “Leurre.com: On the advantages of deploying a large scale distributed
honeypot platform”. In Proceedings of E-Crime and Computer Conference (ECCE'05), Monaco, March 2005.

49

50

Session on System Modelling

Chair: Benedicto Rodriguez, University of
Southampton, UK

51

52

A multi-perspective approach for the design of error-tolerant

socio-technical safety-critical interactive systems

Sandra Basnyat

University Paul Sabatier, LIIHS-IRIT

118, route de Narbonne 31062 Toulouse, Cedex 4, France

basnyat@irit.fr

Introduction

This article summarises the concept of the PhD research on a multi perspective method for the design of safety

critical interactive systems. The goal is to propose model based design techniques that allow to take into account

and manage erroneous human and system behaviour. We present an integrated modelling framework to attain

this goal

One of the main characteristics of interactive systems is the fact that the user is deeply involved in the operation

of such systems. More specifically, a safety critical interactive system is one in which any failure or design error

has the potential to lead to loss of life, that is to say the cost of failure outweighs the cost of development. The

design of a usable, reliable and error-tolerant interactive safety-critical system is a goal that is hard to achieve

because of the unpredictability of the humans involved, but can be more closely attainable by taking into account

information from previous known situations. One such usually available and particularly pertinent source is the

outcome of an incident or accident investigation.

While designing interactive systems, the use of a formal specification technique is of great help because it

provides non-ambiguous, complete and concise notations. The advantages of using such a formalism is widened

if it is provided by formal analysis techniques that allow to prove properties about the design, thus giving an

early verification to the designer before the application is actually implemented.

Model-based development (MBD) is a developing trend in the domain of software engineering [7] advocating

the specification and design of software systems from declarative models [11]. It relies on the use of explicit

models and provides the ability to represent and simulate diverse abstract views that together make up a

‘system’, without the need to fulfill its implementation. Many types of models are used based on the given

requirements to contribute to the overall design. For example, task model, user model, environmental model,

platform model, system model, presentation & layout model, design model. However, formal specification of

interactive systems often does not address the issues of erroneous behaviour that may have serious consequences

for the system.

Our research focuses mainly on task and system modelling, which like other models are generally developed for

normal behaviour without taking into account human or system-related “errors”. What is more, task modelling

and system modelling are often performed by experts with different competencies. It is unlikely that a human

factors specialist will develop the task model and continue to develop the system model. A computer scientist

will also in general be incapable of collecting the necessary information for task modelling.

53

We have developed an approach that supports the integration of information relating to human and system-

related erroneous behaviour in models (principally the task and system models). We believe this perspective

extends the general boundaries of model based development (MBD), by taking into account additional

information relating to previous experiences of failure. The ultimate goal is improvement of the design process

with the aim of producing safer safety-critical interactive systems.

1. Motivation and Objectives

Human error plays a major role in the occurrence of accidents in safety-critical systems such as in aviation,

railways systems, or nuclear power plants [12]. It has been claimed that up to 80% of all aviation accidents are

attributed to human ‘error’ [6]Yet in practice, most accidents stem from complex combinations of human

‘errors’, system ‘failures’ and managerial issues (of employees, of the company…). Interactive systems, and in

particular safety-critical interactive systems need to be designed while taking into account the eventuality of

human “error”. These aspects should be taken into account in early phases but also throughout the deign process.

2. The Approach

Our approach aims to bring coherence between the task model and system model while taking into account

human and system-related error in order to minimise the occurrence of erroneous events (also known as

deviations) in safety-critical interactive systems. The approach detailed in the “integrated modelling framework”

presented in Error! Reference source not found..

The approach results from our research on two case studies. The first concerns a fatal mining accident involving

the waste fuel delivery system of a cement plant. The second is an interactive application (MPIA) embedded in

an interactive cockpit and compatible with the ARINC 661 standard [1].

Our fundamental idea is to gather, within a single framework, principle issues of User Centred Design (UCD)

and of safety critical interactive systems.

In figure 1, there are four modeling phases, requirements modeling, system modeling, task modeling and safety

modeling. The PhD research is based on these four models. Since the case studies we have been working on are

existing systems, we will not discuss the requirements modelling here.

Part 1 : system modelling. For the system modelling we have used the ‘Petshop’ environment [8] and the

Interactive Cooperative Objects (ICO) formalism [PUT NAVARRE 2003]. The phase is divided into two parts,

the modeling of functional behaviour and of safety-related behviour. The modeling of functional behaviour has

been demonstrated using the first case study [3]. After having modeled the system, we have performed a

technical barrier analysis on the system to eventually reduce the possibility of erroneous events. The barriers are

also modeled using the ICO notation and Petshop environment. This coupling of barriers and system and what it

brings to increase the reliability of an interactive system has been presented in [13].

Part 2 : task modelling. This phase is divided in two, the first describes the predicted behaviour of the user and

results in an analysis of user tasks and activities. The second concerns the modeling of user deviations with

54

respect to predicted behaviour. For this phase, we use the ConcurrentTaskTree (CTT) [10]. The CTT tool,

Figure 1: Integrated Modelling Framework

CTTE allows the task models to be simulated in order to study different possible paths of interaction. The

notation is based on four types of task (abstract tasks, user tasks, system tasks and interaction tasks) as well as

several temporal operators. To take into account erroneous user behaviour, our task modeling is extended by

reusable subtasks (called error patterns) resulting from human error reference tables. The method for integrating

“standard” task models and task models representing potential deviations is described in [9] [3].

1 2

3

4

55

Part 3 : Safety modelling. In this phase, we propose a safety analysis by exploiting the “safety case” notation

using the “goal structuring notation” GSN. Safety Cases are documentation often required by regulatory

agencies before they will grant approval for the operation of complex command and control systems. These

cases describe the arguments that a company will use to convince the regulator that their proposed application is

‘acceptably safe’[5].

Phase 3 also exploits further information including incident and accident reports. It is clear that this information

is central to our proposed approach since a significant aspect of safety is to make sure successive versions of a

system do not allow the same incidents or accidents to be reproduced. The use of safety cases in the proposed

approach is described in [3].

Part 4: Testing. This part concerns the verification of prototypes and models. We have used incident and

accident reports to perform events and causal factors analyses. This technique is often used in accident

investigation to identifier the path of events and contributing factors that led to an accident. We have also ICO

used system models to perform marking graph analyses. The graphs are used to systematically explore all of the

possible scenarios leading to an accident which described in terms of states in the system model. The techniques

serve two purposes. Firstly, to ensure that “modified” system model does not allow the same sequence of events

that led to the accident and secondly, our approach can be used to reveal further scenarios that could eventually

lead to non-desirable system states. We have illustrated this concept on the first case study in [2].

3. PhD Progress

The research presented corresponds to the 3rd year of the PhD which is envisaged to end by December 2006.

The PhD is co-directed by Philippe Palanque (University Paul Sabatier, Toulouse, France) and Chris Johnson

(University of Glasgow, Scotland, UK)

4. Acknowledgements

The research is supported by the EU funded ADVISES Research Training Network, GR/N

006R02527.http://www.dcs.gla.ac.uk/advises/

5. References

1. "ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification 661." Airlines

Electronic Engineering Committee 2002.

2. Basnyat, S, Chozos, N, Johnson, C and Palanque, P. "Redesigning an Interactive Safety-Critical System to

Prevent an Accident From Reoccurring." 24th European Annual Conference on Human Decision Making

and Manual Control. (EAM) Organised by the Institute of Communication and Computer Systems, Athens,

Greece. (2005)

3. Basnyat, S, Chozos, N and Palanque, P. "Multidisciplinary Perspective on Accident Investigation. " Special

Edition of Elsevier's Reliability Engineering and System Safety Journal (2005)

4. Bastide, R, Sy, O, Palanque, P and Navarre, D. " Formal Specification of CORBA Services: Experience and

Lessons Learned." ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA'2000), Minneapolis, Minnesota USA. ACM Press (2000)

5. Bloomfield, R., P Bishop, C Jones and P Froome. Available Online at:

Http://Www.Adelard.Co.Uk/Resources/Papers/Pdf/Dsn2004v10.PDF (Accessed 12 December 2004). 2004.

56

6. Johnson, C. W . Failure in Safety-Critical Systems. A Handbook of Accident and Incident Reporting.

University of Glasgow Press, Glasgow, Scotland (2003).

7. MDA Guide version 1.0.1. "OMG Document number omg/2003-06-01." Web page, 2003. Available at

http://www.omg.org/cgi-bin/doc?omg/03-06-01.

8. Navarre, D, Palanque, P and Bastide, R. "A Tool-Supported Design Framework for Safety Critical

Interactive Systems." Interacting With Computers 15/3 (2003) 309-28.

9. Palanque, P, and Basnyat, S. "Task Patterns for Taking into Account in an Efficient and Systematic Way

Both Standard and Erroneous User Behaviours." HESSD 2004 6th International Working Conference on

Human Error, Safety and System Development, Toulouse, France (within the IFIP World Computing

Congress WCC 04) (2004)

10. Paterno, F. Model Based Design and Evaluation of Interactive Applications. Berlin, Springer Verlag (1999)

11. Puerta, A. R . "Supporting User-Centered Design of Adaptive User Interfaces Via Interface Models." First

Annual Workshop On Real-Time Intelligent User Interfaces For Decision Support And Information

Visualization, San Francisco. (1998)

12. Reason, J. Managing the Risks of Organizational Accidents., Aldershot, UK: Ashgate (1997).

13. Schupp, B, Basnyat, S, Palanque, P and Wright, P. "A Barrier-Approach to Inform Model-Based Design of

Safety-Critical Interactive Systems." 9th International Symposium of the ISSA Research Section Design

Process and Human Factors Integration: Optimising Company Performances, Nice, France. (2006)

57

ReSIST Knowledge Architecture: Semantically Enabling Large-

Scale Collaborative Projects

Afraz Jaffri, Benedicto Rodriguez

Dependable Systems and Software Engineering Group

School of Electronics and Computer Science

University of Southampton, Southampton S017 1BJ, UK

Introduction

The ReSIST project is aimed at providing a framework towards resilience for survivability in IST systems. One

of the aims of the project is to collate as much knowledge as possible about resilient systems and technology.

This includes organisations that are researching resilient systems; researchers interested in resilient systems;

papers associated with resilient systems; research issues; faults, errors and failures that have occurred on IST

systems; and resilient systems research topics. All the knowledge will be stored in a knowledge base as RDF.

In order to describe the concepts within the domain of resilient systems, there needs to be an ontology that can

accurately describe the relationships between these concepts and act as a controlled vocabulary for the project.

This extended abstract briefly describes the ontology design process and the problems that are faced when trying

to model a domain. Our solutions to these problems, with reference to the ontology of dependable and secure

computing within ReSIST, are outlined and directions for future monitoring of the ontology are given.

1. Issues in Ontology Design

Even though the main components in ontology design are well known and are formally defined, there are still

significant issues preventing ontology design from becoming a systematic activity. Mainly because there is no

one correct way to model a domain and there are always viable alternatives [2].

There has been however different efforts to formalize the process of ontology design in order to minimize its

subjectivity and convert it into a well-defined engineering activity [3].

Regardless of the methodology employed, the designer will have to identify how the concepts of the domain

being modelled fit into the main components of the ontology, which are:

• Classes: The domain concepts, usually represented in a hierarchy.

• Relations (also known as properties or slots): The defined links between concepts in the domain.

• Axioms: Act as restrictions and control the use of certain relations.

• Instances: Actual member of classes.

Based on how the designer populates these ontology components with the domain vocabulary will determine the

success of the ontology in the knowledge base.

2. Issues in the Design of a Dependable and Secure Computing Ontology

In order to fit the ReSIST dependable and secure computing ontology for purpose, the first thing to consider in

the design process is the requirements or use cases for which the ontology will be used [2]. This involves,

creating a vocabulary of the terms or concepts within the domain that are trying to be modelled [3]. In this case

there is such a vocabulary already available and it is based on a paper by the IEEE describing a taxonomy of

dependable and secure computing [1]. The taxonomy is extremely complex and is not a straight forward

hierarchy that can easily be turned into an ontology.

58

The classification of faults is particularly difficult to turn into an ontology, as the classification provides a lot

more information than can be modelled by a straight class hierarchy. There are eight elementary fault classes

and three other categories that overlap with the elementary classes: physical faults, interaction faults and

development faults. With so many dimensions it is unclear which concepts to model as classes and which to

model as properties. In a situation such as this, the best way to model the domain is to create an instance of one

of classes that will be modelled.

The Risk’s Digest is a forum for reporting faults and errors on all types of system. One of these faults from the

latest issue is summarised below:

Excel garbles microarray experiment data

When we were beta-testing [two new bioinformatics programs] on microarray data, a frustrating problem

occurred repeatedly: Some gene names kept bouncing back as "unknown." A little detective work revealed the

reason:

... A default date conversion feature in Excel ... was altering gene names that it considered to look like dates.

For example, the tumor suppressor DEC1 [Deleted in Esophageal Cancer 1] was being converted to '1-DEC.'”

This fault could be described and modelled in the otology in a number of ways. If one was to create a class for

every variety of fault type, there would be 31 classes. With this approach the fault could be described, in RDF,

as follows:

<resist:Develpoment-Internal-Human-Made-Software-Non-Malicious-Non-Deliberate-Accidental-Persistent-

Fault rdf:about=”http://fault-uri”>

<resist:fault-type rdf:resource=&resist;Development-Fault/>

<akt:has-pretty-name> Excel garbles microarray experiment data

</akt:has-pretty-name>

</resist:Develpoment-Internal-Human-Made-Software-Non-Malicious-Non-Deliberate-Accidental-Persistent-

Fault>

However, with this approach the names of the faults become very long and cumbersome and some of the

information is lost. A second way of modelling the hierarchy would be to create a generic fault class and then

create eight properties corresponding to the eight elementary fault classes. The domain of these properties will

be the 16 fault types given in the paper. An example of this for the same instance data is shown below:

<resist:Fault rdf:about=”http://fault-uri”>

<resist:phase-of-creation rdf:resource=”&resist;Development-Fault/>

<resist:system-boundary rdf:resource=”&resist;Internal-Fault”/>

<resist:phenomenological-cause rdf:resource=”&resist;Human-Made-Fault”/>

<resist:dimension rdf:resource=”&resist;Software-Fault”/>

<resist:objective rdf:resource=”&resist;Non-Malicious”/>

<resist:intent rdf:resource=”&resist;Non-Deliberate”/>

<resist:capability rdf:resource=”&resist:Accidental-Fault”/>

<resist:persistence rdf:resource=”&resist:Persistent-Fault”/>

<resist:fault-type rdf:resource=&resist;Development-Fault/>

<akt:has-pretty-name> Excel garbles microarray experiment data </akt:has-pretty-name>

</resist:Fault>

59

This approach leads to clearer formatting and does not lose any of the information from the hierarchy. The

argument about the presentation of the RDF could be said to be irrelevant since it is intended for machine

processing. However, if queries were to be made on the data, it would be much easier to get results if the

instances were created according to the second method. For example, if somebody wanted to get the names of

all Software faults stored in the knowledge base, they could make the following SPARQL query:

PREFIX resist: <http://www.resist.eu/ontology/resist#>

PREFIX akt: <http://www.aktors.org/ontology/portal#>

SELECT ?y

WHERE

(?x resist:dimension resist:Software-Fault .

?x akt:has-pretty-name ?y .)

The same query could not be made with the data made with the first method because we do not know or care

whether the fault is development, malicious, human-made, etc. In other words the class hierarchy creates a high

level of coupling and dependency between the faults which is not the case with the second method.

3. Other Ontologies in the ReSIST Knowledge Base

The initial building block of the ReSIST Knowledge Base (RKB) is the set of ontologies needed in the

application.

Obviously the key ontology is the one in dependable and secure computing, but because of the requirements of

the ReSIST project, there are additional sub-ontologies or utility ontologies that will be needed in the knowledge

base. These ontologies are described below:

• Dependable and Secure Computing Ontology: Main RKB ontology which model the key concepts of the

RKB.

• Computer System Applications Ontology: Includes a model for the computer systems, fields, or

applications, to which the concepts of dependability and security are being applied.

• Academia Domain Ontology: Provides the model for the academic domain, institutions, people,

publications, research interests, etc.

• Syllabus and Courseware Ontology: Provides the model for syllabus and courseware in the dependability

and security field. The definition of such educational material is another goal of the RKB.

With the exception of the dependability and security ontology, which is being designed from scratch, the rest of

the ontologies will be reused from publicly available ontologies if they are available. Some possible ontologies

have already been identified for this purpose.

In the case of the ontology for the academic domain, the AKT Reference Ontology [4] is already being used for

ReSIST.

For a syllabus and courseware ontology some candidates are being evaluated. It does not seem to be an ontology

readily available although the IEEE Learning Technology Standards Committee (LSTC) Learning Object

Metadata (LOM) [5] specification could be an excellent starting point to meet the RKB’s needs.

Lastly, the ontology about computer systems applications presents the problem of a domain being too generic

and not well specified. The list of systems where the concepts of dependability and security can be applied to is

potentially endless. Taxonomies such as DMOZ Open Directory Project [6] could address this issue.

Figure 1 illustrates the main components in the RKB architecture and where the ontologies described above fall

into that architecture:

60

Figure 1 - Ontologies in the ReSIST Knowledge Base.

The ontologies provide the “semantic knowledge” as an Ontology Web Language (OWL) [7] deliverable that

will be stored in the Triplestore component as Resource Description Framework (RDF) [8]. All the data in the

Triplestore will provide a closed vocabulary for the RKB with semantic relations. The interface for users of the

RKB is provided via the ReSIST Semantic Wiki application. This is a customisation for the ReSIST project of

the open-source Semantic MediaWiki extension [9] that is publicly available.

The ReSIST Semantic Wiki will be able to use the RDF data from the Triplestore and create content

dynamically using the semantic relations in the RDF data, as well as modify or add new semantic knowledge

into the Triplestore based on the actions performed by the users of the RKB as they create, edit, or delete

ReSIST Wiki pages.

The last component in the architecture diagram is the ReSIST EPrints [10] application. A content management

tool provided to manage the repository of publications relevant to the ReSIST project. It will also be

synchronised with the Triplestore in the sense that the metadata of relevant ReSIST publications should be

consistent with the closed vocabulary in the Triplestore.

Another of the challenges in the implementation of the RKB is to maintain the integrity of the metadata stored in

the Triplestore as RDF, with the ReSIST Semantic Wiki and the ReSIST Eprints repository.

4. Conclusion and Future Work

Creating the ReSIST ontology has shown that in order to model complex domains that are not well understood,

the applications for which the ontology will be used should be looked at. In particular, creating instances and

trying queries on the knowledge that is likely to be used will aid and improve the ontology, reducing the number

of unused classes that could have been made without looking at use cases.

It remains to be seen how the ontology will be used and how the ontology will be extended. The ontology

evolution will be documented and monitored and it is expected that these results will be presented at the

Seminar.

Additional challenges faced in the implementation of the RKB include the creation and / or reuse of additional

sub-ontologies, and the algorithms to preserve referential integrity of semantic data within the Triplestore and its

applications, such as the ReSIST Semantic Wiki or the ReSIST EPrints repository.

5. References

[1] Jean-Claude-Laprie, Brian Randell, Carl Landwehr, “Basic Concepts and Taxonomy of Dependable and

Secure Computing”, in IEEE Transactions on Dependable & Secure Computing. Vol. 1, No. 1, pp. 11-33.

Academia
Domain

OntologyComputer

System
Applications

Ontology

Dependable
and Secure
Computing

Ontology

Syllabus and
Courseware

Ontology

ReSIST

Triplestore
(RDF)

ReSIST

Semantic

Wiki

ReSIST

EPrints
(Content
Mgmt
Tool)

61

[2] N. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first ontology.

Technical Report KSL-01-05 and SMI-2001-0880, Stanford Knowledge Systems Laboratory and Stanford

Medical Informatics, March 2001.

[3] Fernandez, M., Gomez-Perez, A., & Juristo., N., METHONTOLOGY: From Ontological Art to Ontological

Engineering. In Workshop on Knowledge Engineering: Spring Symposium Series (AAAI'97), pages 33-40,

Mellow Park, Ca, 1997. AAAI Press.

[4] The AKT Reference Ontology. http://www.aktors.org/publications/ontology/

[5] Learning Technology Standards Comittee of the IEEE: Draft Standard for Learning Objects Metadata IEEE

P1484.12.1/D6.412. June 2002). http://ltsc.ieee.org/doc/wg12/LOM 1484 12 1 v1 Final Draft.pdf/

[6] DMOZ. Open Directory Project. http://dmoz.org/

[7] Mcguiness, D. & Harmelan, F. V. Eds., 2003. OWL Web Ontology Language Overview, W3C

Recommendation [Online] Available from: http://www.w3.org/TR/owl-features/ [Accessed 4 April 2006].

[8] Lassila, O & Swick, R., 2002. RDF Model and Syntax Specification, (W3C Recommendation), [Online],

Available from: http://www.w3.org/TR/REC-rdf-syntax/ [Accessed 5 July 2005].

[9] Semantic MediaWiki. http://sourceforge.net/projects/semediawiki/

[10] Eprints. Supporting Open Access (OA). http://www.eprints.org/

62

Introducing Hazard and Operability Analysis (HazOp) in

business critical software development

Torgrim Lauritsen - Newcastle University

Introduction

I am evaluating the effect of introducing safety analysis techniques in business critical software development

environment. The goal is to find techniques that can help software developers to develop software that is more

business safe than today. I have designed and executed an experiment with the Hazard and Operability Analysis

(HazOp) technique that have been used with success for safety-critical systems like avionics, train, nuclear

plants and for the chemical process industry for many years. Since safety critical systems deals with the same

issues that business critical software deals with, I believe that it can have the same effect in business critical

software development.

1. Hazard and Operability Analysis (HazOp)

HazOp is a formal, methodical and critical investigating technique that can be used to analyse UML diagrams,

such as class and sequence diagrams.

The goal of a HazOp analysis is to identify possible problems that can arise during the operation and

maintenance of the software. The results from the analysis can then be used as a basis for further development

and tests. Guidewords are used during the analysis to identify possible problem areas - see bullet points below

for some guidewords and their interpretations for message passing:

• No / None - Message not sent when it should be

• Other than - Message sent at wrong time

• In addition to - Message sent at correct time and also an incorrect time

63

• More than - Message sent later/more often than intended

• Less than - Message sent earlier/less often than intended

• Earlier - Message sent earlier within message sequence than intended

• Later - Message sent later within message sequence than intended

The guide words should be used on the study nodes – points in the system where we want to focus. Usually

study points are points where the system interacts with its environment – e.g. uses input or two or more parts of

the system exchange information – e.g. a network connection

Other issues to analyze are event, action, action for a software control system, states, relationships, classes,

attributes, message destination, message conditions, etc.

The results from the HazOp analysis are documented in a HazOp table:

Guide

word

Study node Causes Consequences Possible solution

Other

than

Buyer sends

an item

request

Mismatch of

what is

perceived and

what is ordered

Wrong items

will be sent to

the customer

Insert check to ensure

correct information

Other

than

Buyer signs

for order

Could be a

imitation of the

signature ->

fraud

Company will

lose money

Insert barrier that check

signature

No Buyer pays

invoice

Company

receives no

money for the

items sold.

Company do not

make profit

from the sale.

Implement a credit

check and log who

placed the order

…. ….. …… ………………. ……

Table 1.0

2. HazOp Experiment in four Newcastle companies

I am now finished with the experiments and the data collection from four software development companies in

Newcastle. I am going to give you the results from the analysis at this student seminar.

64

In the analysis of the experiment I will answers research questions like:

• “Will the introduction of the HazOp technique lead to software that is more business safe?”

• “Does the HazOp technique find more hazards than ad hoc “brainstorming” techniques that are in use in

today’s software development?”

• “Will the software developers see the benefit of using safety analysis techniques in their daily work?”

• “Can the results (e.g. safety requirements) be included in test suites?”

• “Can the use of safety analysis techniques compensate for a reduction in time spent on testing?”

65

> Enterprise Compliance at Stake <

Dependability Research to the Rescue!

Samuel Müller

IBM Zurich Research Lab
sml@zurich.ibm.com

1 Introduction

Large enterprises are confronted with an increasing amount of new and con-
stantly changing regulatory requirements. In the light of this development, suc-
cessfully being and effectively remaining compliant with all relevant provisions
poses a big challenge to affected companies. In this context, research findings
in dependability, that is, in the trust that can be placed upon a system to de-
liver the services that it promises, may come to the rescue. In this paper, we
shall delineate how dependability research can contribute to successful compli-
ance management. We shall also demonstrate how the classical dependability
and security taxonomy can be generalized and extended to suit the needs of this
evolving field.

1.1 Dependability and Compliance?

While the technical benefit and the respective merits of dependability are un-
doubted in research, investments in dependability are often hard to justify in
practice. Unless a system is absolutely critical to the business, the importance
of dependable and secure systems is frequently overlooked or simply ignored.

The advent and importance of enterprise compliance obligations has the po-
tential to change this conception. As mentioned above and described in [1],
organizations are confronted with an accretive amount of increasingly complex
and constantly evolving regulatory requirements. For instance, as a result of the
famous Sarbanes-Oxely Act, CEOs and CFOs now face personal liability for the
occurrence of material weaknesses in their internal control systems for financial
reporting. Furthermore, companies risk paying considerable implicit (e.g., de-
crease in market valuation or customer base) and explicit (e.g., monetary fine)
penalties, if they fail to attain and prove compliance with various regulations,
provisions, and standards. Hence, particularly large enterprises are well-advised
to carefully check their regulatory exposure and to ensure overall compliance.

Given the complexity of today’s IT-supported business operations, attaining
overall enterprise compliance is by no means an easy task. Hence, in order to
continually ensure compliance with relevant regulations, companies need a well-
defined and comprehensive approach to compliance management. In an attempt
to address this need, we have proposed REALM (Regulations Expressed As Log-
ical Models), a well-structured compliance management process, which includes

66

2

the formal representation of relevant regulatory requirements using a real-time
temporal object logic (cf. [1]).

However, there are also a number of strands of existing research that may
be in a position to contribute both to an all-embracing approach as well as to
provide individual solutions. One promising research area with a seemingly large
potential to address many issues central to achieving compliance is dependabil-
ity research. Through the logical formalized of required properties, potentiating
automated transformations and enforcement, the mentioned REALM-based ap-
proach to compliance already shares some similarities with certain areas within
dependability (e.g., fault prevention/removal and, in particular, static verifica-
tion). In close analogy, there seem to be many opportunities to employ well-
established solutions from a dependability context to addressing enterprise com-
pliance.

1.2 Some Well-known Concepts from Dependability

As defined in [2] and [3], “dependability refers to the trust that can be placed
upon a system to deliver the services that it promises”. As a result, dependability
does not only concern security, but it also includes a number of other system
properties, such as reliability, safety, and quality of service.

According to [3] and more recently [4], everything that might go wrong in a
computer system can be characterized as being one of the following three types:
fault, error, or failure. We speak of a failure when the delivered service no longer
complies with its specification. We think of an error as that part of the system
state that is liable to lead to a subsequent error. And we use fault to refer to the
hypothesized cause of the error.

With an eye on possible applications within compliance management, in the
above definition of failure, we could substitute ‘service’ with ‘behavior’ or ‘system
functionality’, and ‘specification’ with ‘regulatory requirement’. The definitions
of ‘error’ and ‘fault’ could stay the same. Hence, we basically introduce compli-
ance as a new and broader notion of dependability, and we specifically introduce
a new type of failure, namely, a compliance failure.

Dependability research has also come up with a taxonomy that characterizes
the possible approaches to the prevention of failures through preventing and
neutralizing errors and faults. In particular, [3] defines four categories: fault

prevention, fault tolerance, fault forecasting, and fault removal.

Fault tolerance can be further subdivided into error processing and fault

treatment. The former can be done using error recovery (i.e., the substitution
of the erroneous state by an error-free one) or error compensation (i.e., deliver-
ing of an error-free service using available redundancy). The latter is done by
first determining the cause of the errors at hand (fault diagnosis), and by then
preventing faults from occurring again (fault passivation).

Fault forecasting, possible using both probabilistic and non-probabilistic tech-
niques, denotes evaluating system behavior ex ante with respect to future fault
occurrence or activation.

67

3

Finally, fault removal involves three steps: first the we need to check whether
faults are present (verification), then the causes of identified faults need to be
determined (diagnosis), and finally, they need to be adequately addressed and
possibly removed (correction).

2 Dependability to the Rescue

In our paper, we stress the important role of dependability and security in the
context of compliance management. Using the classical dependability and secu-
rity taxonomy introduced above, we can better understand the problems that
arise with respect to enterprise compliance, and we can identify existing and new
solutions addressing these problems. Furthermore, we will demonstrate how en-
terprise compliance can be characterized using the various taxonomical concepts
and classes and, wherever necessary, we will suggest extensions to the taxonomy.

In particular, our contribution to existing research shall be as follows:

1. First of all, we will delineate in detail how dependability research can come
to the rescue of a large set of compliance management problems. Specifically,
we will demonstrate how dependability can contribute to attaining enterprise
compliance with a broad set of regulatory requirements. Towards this end,
we will show how the compliance problem can be better understood by map-
ping the classical dependability and security taxonomy to compliance-related
aspects. For instance, we will explain how fault tolerance is to be understood
in the larger context of enterprise compliance and we shall provide examples
to illustrate our ideas. Along these lines, we will point out how established
techniques and results from dependability can be directly applied to tackling
individual compliance problems.

2. Secondly, we will also explain how dependability may be impacted by re-
search on risk & compliance. Specifically,
(a) we shall argue that compliance provides a useful legitimation and possi-

bly even a business case for many subfields of dependability research.
(b) we will argue that with respect to [4], compliance may lead to a gener-

alized form of the classical dependability and security taxonomy. Along
these lines, we will identify and suggest a number of additional attributes
that, in our opinion, need to be added to the existing taxonomy.

(c) we shall also discuss further additions to the taxonomy such as supple-
mental fault types and error classes.

(d) as pointed out by [2], in the context of fault prevention/removal and
security, convincing has got an important function and deserves to be
included as a forth subtask. In close analogy, we identify and stress the
crucial role of auditing in the context of compliance, and we will give a
justification for this.

3. Finally, we will demonstrate how the classical dependability and security
taxonomy can be combined with a set of identified regulatory requirements
categories. This will give rise to an enhanced and comprehensive classification
framework to better analyze the problem at hand and to identify feasible
solutions.

68

4

References

1. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed As
Logical Models (REALM). In Moens, M.F., Spyns, P., eds.: Proceedings of the 18th
Annual Conference on Legal Knowledge and Information Systems (JURIX 2005).
Volume 134 of Frontiers in Artificial Intelligence and Applications., IOS Press (2005)
37–48

2. Meadows, C., McLean, J.: Security and dependability: Then and now. In: Computer
Security, Dependability, and Assurance: From Needs to Solutions, IEEE Computer
Society (1999) 166–170

3. Laprie, J.C.: Dependability: Basic concepts and terminology. Dependable Comput-
ing and Fault Tolerant Systems 5 (1992)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1 (2004) 11–33

69

Fault modelling for residential gateways

Sakkaravarthi RAMANATHAN

France Telecom RD/MAPS/AMS/VVT

2, avenue Pierre Marzin, 22307 Lannion Cedex, France

sakkaravarthi.ramanathan@francetelecom.com

Introduction

Traditional communication access methods, which rely on twisted copper pairs for Public Switched

Telephone Network or coaxial cable for television service, are steadily evolving to a diverse collection

of technologies that are capable of providing two-way broadband access to the residence [1]. This new

capability presents both an opportunity and a challenge to the access providers. The opportunity arises

in the ability to deliver many new services to the customer, while the challenge resides in the necessity

of delivering these services economically and with a high level of QoS. High-speed access is evolving

from Integrated Services Digital Network data rates, to xDigital subscriber line data rates that range

from 1.5 Mbps to 50 Mbps, to fiber-to-the-home rates that can be in the hundreds of Mbps. Support for

broadband access to the home must be able to accommodate new features and services as they develop

without rendering the home infrastructure obsolete.

Therefore, a modular solution is required, where access interfaces can be updated without disabling (or

even powering down) feature interfaces, and new feature interfaces can be added without requiring a

new access infrastructure.

1. Residential gateways

A residential gateway is a centralized intelligent interface between the operator's access network and

the home network. It is also the physical interface terminating all external access networks to the home

as well as the termination point of internal home networks and enabling platform for residential

services to be delivered to the consumer, including both existing services and new ones yet to come.

Recent advances in access technologies are creating several new network elements that enable the

delivery of multiple services over high bandwidth access streams. However, these advances are often

slowed by the substantial amount of legacy networks and systems, as well as by the lack of a unifying

end-to-end architectural vision. The importance of residential gateways is to support emerging access

technologies, legacy home networks, and new home network technologies in a seamless, modular way.

� Advantages

An access network incorporating residential gateways provides a number of benefits to consumers. A

single access line can offer many services, so the addition of a new service does not require a

maintenance call requiring new wiring to the house. A consumer can have greater choice of service

providers for individual services, and can change among them dynamically. Interactions between

different in-home networks are possible because they all terminate at the residential gateway. Services

that require “always on” functionality (e.g., home security or utility meter access) are readily

implemented, since the access network is always active and the gateway cannot be inadvertently turned

off. Residential gateways preserve consumer investment in existing in-home networks.

As the telecommunications market evolves from narrowband to broadband delivery, service providers

also benefit from residential gateways in customer’s premises. The access provider’s risk is reduced,

since it needs not predetermine all the possible services to be provided on a new access network.

Furthermore, broadband access provides the means of delivering new services that have not yet been

70

developed. A change in the access infrastructure has little impact on customers, since the residential

infrastructure does not change when a new access method is installed. The marginal cost of adding a

new service is low, since there is no need to add new access infrastructure. Since residential gateways

can have substantial processing power, service providers can decentralize their infrastructure.

Considering the needs and advantages, Fig. 1 envisages the perfect residential gateway.

Figure 1: A full fledged residential gateway

2. France Telecom's residential gateway (LiveBox)

Introduced in July 2004, this home gateway plugs into the regular phone jack for broadband connection

of all residential communication services. People can surf the Internet, watch TV via ADSL, make

voice-over-IP phone calls or video calls, or play network games. Multimedia devices, phones, PCs,

TVs, cameras and video-game consoles benefit from security and ease of use. The LiveBox is

equipped with an ADSL modem plus Ethernet, WiFi and Bluetooth interfaces to accommodate all

types of devices. It becomes a single point of entry for an entire world of high-tech entertainment and

communications services. LiveBoxes met with tremendous success right from its launch, with 234,000

units leased in France in 2004, plus sales. The residential gateway was also rolled out in the United

Kingdom, the Netherlands and Spain, and, at the end of 2004, was still the only product of its kind in

these markets. At the end of December 2005, the target reached up to 1,342,000 and it is estimated that

around 2 million are sold out so far (April 2006) in France itself.

Figure 2: LiveBox's connections to devices

71

Ultimately, the goal is to develop a versatile residential gateway that will support QoS and paves a way

to increase the revenues for service provider as well as satisfying the user needs. As QoS is a major

criteria, the challenge here is dependability [2]. It clearly involves availability, security, reliability and

usability. Work currently being undertaken includes how failures occur, how systems can be made

more reliable and secure, how various issues such as infrastructure, responsibility, heterogeneity, risk

and maintainability are addressed within the areas of advanced home technologies.

3. Residential gateway and dependability

The main aim of the work is to minimize regular failures and to avoid catastrophic failures in the future

through a pragmatic approach, i.e., the analysis of field failures. We also intend to increase the

efficiency of fault diagnostic and correction mechanisms, tasks undertaken by hot line operators. The

starting point is to search for accidental faults (software, hardware, and human) and malicious faults

(attacks), then to identify and to classify those faults in order to build a fault model.

• Fault model

Fig. 3 shows a simple architectural fault model. Clearly analyzing the field failure data's, we are

describing the origin and all the problems and conditions. We also evaluate the cause-effect of

operational data, so that it paves a way to build a fault model. Solutions and improvements will be

provided to LiveBox actors of various phases.

Figure 3: Fault model Figure 4: Functional diagram

We envisage analyzing the failures using two different techniques depending upon their role and

complexity.

� Fault tree and event tree analysis

Fault tree analysis (FTA) is a deductive, top-down method of analyzing system design and

performance. This approach starts with a top event (catastrophic failure), followed by identifying all

the associated elements in LiveBox that could cause the top event to occur. An event tree analysis

(ETA) is a visual representation of all the faults which can occur in a system. As the number of fault

increases, the picture fans out like the branches of a tree. Event trees can be used to analyze LiveBox in

which all components are continuously operating, or in which some or all of the components are in

standby mode. The starting point disrupts normal LiveBox operation. The event tree displays the

sequences of events involving success and/or failure of the LiveBox components.

72

� Fault modelling goals

In Fig. 4, we try to understand the origin of faults, its type, its gravity, its urgency and group them

together in a way to:

- reduce the number of individual defects that have to be considered,

- reduce the complexity of the device description ,

- allow analysis for LB enhancement in all steps of LB lifecycle.

Next step

Designing and validating a benchmark for the LiveBox are the next goals of the study. It has various

subtasks and each will be clearly worked out. First task would be to develop a benchmark for various

dependability metrics (e.g., availability, reliability or security) considering all the desired features. It

can be done either by using field failure data, or drawing inspiration from other standards. The

validation phase is to observe the responses of the LiveBox to various injected faults. Finally,

guarantying the dependability features and ways to increase the security are part of an appropriate

design, required to meet customer's needs. Overall, home technological solutions require a dependable

base set of criteria to be met as well as the technology is evolving, need is not static; people's

relationship to technology in the home is constantly changing.

References

[1] R. McLellan et al., "Residential Gateways in Full Service Access Networks", Bell Labs, Lucent

Technologies, Murray Hill, NJ, USA, http://cm.bell-labs.com/cm/cs/who/rae/noc.pdf

[2] G. Dewsbury et al., "Designing Appropriate Assistive Technology for Home Users: Developing

Dependable Networks", CIB Working Group, October 2002, Roma, Italy,

http://www.dirc.org.uk/publications/inproceedings/papers/54.pdf

73

Modelling dependence and its effects on coincident failure in

Fault- Tolerant, Software-based systems

Kizito Salako

The Centre for Software Reliability,

City University, London. e-mail:kizito@csr.city.ac.uk

INTRODUCTION

Everyday parlance, such as “Two heads are better than one” or “Belts and Braces”, points to the use of

redundancy and diversity as a “common-sense” means of achieving high levels of reliability. In the design of

software-based systems the use of diverse redundancy, in a bid to tolerate software faults, is well known [1,2].

These systems, Fault tolerant Software-based systems (FTS systems), achieve fault tolerance by the

implementation of non-identical, functionally equivalent, software components. Examples of some FTS system

architectures include N-modular redundancy (e.g. majority voted systems1) and N-version, parallel redundancy

(1-out-of-N systems)2 where software components make up individual software channels of the N-version

system (so N software channels in total). In particular, 1-out-of-N systems ensure that the reliability of the N-

version system can be no worse than the reliability of the individual software components. This is because the

software components of the system may not have identical failure behaviour; they may fail on different subsets

of the set of possible demands that may be submitted to the N-version system in operation. The software

components are said to exhibit a level of failure diversity.

In order to stimulate failure diversity between the software versions the development process of each software

channel3 may be carefully managed by a centralised, management team. This team oversees the N-version

system’s development process. There are several, possible management policies. Some of these are

- Perfectly isolated software development teams. The teams cannot communicate with one another. This

removes the possibility of a mistake or erroneous “point of view” in development propagating from one

team to another. To achieve this physical isolation of the teams may be complemented by the controlled

dissemination of information, by the centralised management team, to the development teams for each

channel;

- In addition, diversity between the isolated teams in the circumstances surrounding the way they develop

their respective software channels, may be forced (forced diversity). For instance, the teams may have

different budgetary constraints or different design and development methodologies (different programming

languages, algorithms, Integrated Development Environments, e.t.c.) for their respective software

development efforts;

1 A majority-voted system is one in which correct system operation is guaranteed if and only if a majority of the software

channels operate correctly.

2 A 1-out-of-N system is one in which the success of the system, in operation, is guaranteed whenever any one of its

component software versions succeeds.

3 Each channel is developed by a unique, development team. Thus, for N software channels there are N development teams.

74

Both of these scenarios, and their consequences for system reliability, have been studied in literature. Eckhardt

and Lee [4] were the first to mathematically model, in particular, coincident failure in an N-version parallel

redundant system. Their model considers perfectly isolated software development teams that develop each of the

systems N software channels. Among other things their model demonstrates that independently developed

software versions may not fail independently. Intuitively this is a result of the teams finding similar tasks in

development equally difficult despite being perfectly separated from each other. So the teams are likely to make

the same mistakes and therefore are correlated in their probabilities of failure. Consequently, their versions are

correlated in their failure behaviour; when one version fails on a demand submitted to the system in operation

the other versions are also likely to fail on the same demand. However, Littlewood and Miller [5] extended this

model by considered forcing diversity between the development processes of isolated, development teams. As a

result of forcing diversity between the teams development processes the teams may become diverse in how

difficult they find similar development tasks. Thus, the probabilities of failure of their respective software

versions could be negatively correlated. Also both of these models also showed that the expected reliability for a

1-out-of-2 system depends on the failure diversity between the versions that make up the system as well as the

reliabilities of the individual versions.

Both of these models are based on the requirement of perfect isolation between the development teams. I have

extended these models by relaxing this requirement and modelling possible forms of dependence between the

development teams. Relaxing “perfect isolation” is useful for the following reasons.

- Perfect isolation is difficult to justifiably achieve in practice. It is important to understand when it is violated

(even small departures from it) and what can be expected for system reliability as a result of this;

- The centralised management team, by allowing useful interaction between the development teams, might

wish to improve the reliabilities of the versions that make up the FTS system’s software channels;

- Economic constraints may require the sharing of tasks and resources by the development teams e.g.

subjecting their software versions to the same testing regimes;

- The development process can be very complex and random with many possible dependencies. It may be

practically infeasible to know the precise outcome of a given stage in the process. For instance, the space of

possible conversations, relevant to developing the FTS system, which may occur between the teams might

be exceedingly large. Hence, it will be useful to capture this uncertainty by considering the effect of not

knowing which of the possible, relevant conversations has taken place.

In what follows I shall give a brief description of the model extensions.

1. MODELLING THE DEVELOPMENT OF AN FTS SYSTEM

The development process and the operation of a FTS system are random processes. That is, the outcome of the

various stages of the development process and the failure behaviour of the resulting FTS system in operation can

be modelled as random variables. These include such stages as system design, writing the initial system

specification, prototyping, verification, and validation. The possible dependencies between these various events

may give rise to complex interactions which are adequately modelled by conditional independence relations

between the random variables.

Graphical models, in particular Bayesian Belief Networks (BBN), can be used to describe and analyse the

various probability distributions over the random variables of interest. The BBN in Fig. 1 is an example of a

fairly complex topology that may arise from modelling a system’s development process and its operation. Each

node represents a random event in the system’s development or operation. The edges between the nodes (more

precisely, absence of edges) depict the conditional independence relationships between the events. The stages in

75

Fig. 2

the development processes of the redundant components/channels that make up the FTS system may have

multiple dependencies between them. Each channel is developed by a unique, development team. In the case of

perfect isolation between the development teams the nodes I and J in the BBN would not exist. That is, the nodes

making up the development of Channel A would be disjoint from the nodes that make up the development of

channel B. This is a generalisation of work carried out by Popov and Littlewood [6].

The BBN in Fig. 2 simplifies the one in Fig.1, preserving the dependencies between the two development

processes of channels A and B, represented by the nodes I and J. There is an equivalence class of BBNs that can

be transformed into this form. We can, therefore, make general statements about a wide range of possible

practical scenarios by restricting our analysis to BBNs like Fig. 2, focusing on dependencies between the two

processes.

76

Fig. 1

2.DISCUSSION

There is not complete agreement, in industry and in the literature, on the best way to manage the development of

a Fault-tolerant software system. Some practitioners point to the possibility of mistakes or erroneous viewpoints

propagating between the development teams as a valid reason for not allowing the teams to communicate with

each other [1]. On the other hand, others point to the expected improvement in the reliabilities of the component

software versions, as a result of useful inter-team interaction, as a definite benefit for overall system reliability

[7]. By modelling dependencies (in the FTS system’s development process and operation) as conditionally

independent events there are several results that either confirm or refute these claims under various scenarios.

Hence, the results provide a formal basis for clearly stating the consequences of preferred practices in a

development process. Some of the achievements of my research are

- the enumeration and analysis of many forms of dependence, all of which can be captured by the same

probabilistic modelling approach. These include scenarios of dependent, forced diverse events between the

teams, e.g. The teams implement the same algorithm (dependence) using a choice of different programming

languages (in particular, this is a forced diverse choice of possible control sequences, method definitions and

options for data manipulation);

- the identification of scenarios where dependence between the developments of redundant components will

always be “a bad thing”. That is, in these scenarios the existence of some dependence between the

development teams always results in no improvement for system reliability. So keeping the teams isolated is

the preferred policy under these circumstances;

77

- the identification of scenarios where the use of forced diversity always results in system reliability that can

be no worse than otherwise. These scenarios include those where the development teams may have some

dependence between them.;

- The models, and their implications, are useful in reasoning about any random process that is characterised

by common dependencies between multiple random events. e.g. complex systems employing human-

machine diversity (air-traffic control systems), hardware and/or software diversity (critical infrastructure).

Possible directions for future work include studying the implications, in terms of system reliability, of

dependence between the nodes of large networks (e.g. critical infrastructure, ubiquitous systems, e.t.c). These

networks, in particular the subsystems thereof, tend to exhibit dependence between their component nodes. As

such, it is natural to expect that the probabilistic modelling approach for reasoning about FTS systems will

provide useful insight into possible failure correlation between the network nodes and subsystems.

REFERENCES

[1] A. Avizienis, “The methodology of n-version programming,” in Software Fault Tolerance, M. Lyu, Ed. John

Wiley & Sons, 1995, pp. 23–46.

[2] M. Lyu and Y. He, “Improving the n-version programming process through the evolution of a design

paradigm,” IEEE Transactions on Reliability, vol.R-42, pp. 179–189, 1993.

[3] B. Littlewood and L. Strigini, “A discussion of practices for enhancing diversity in software designs,” Centre

for Software Reliability, City University, DISPO project technical report LS-DI-TR-

04,2000.[Online].Available:http://www.csr.city.ac.uk/people/lorenzo.strigini/ls.papers/DISPO2000diversityEnha

ncing/

[4] D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of multiversion software subject to

coincident errors,” IEEE Transactions on Software Engineering, vol. SE-11, pp. 1511–1517, 1985.

[5] B. Littlewood and D. R. Miller, “Conceptual modelling of coincident failures in multi-version software,”

IEEE Transactions on Software Engineering,vol. SE-15, pp. 1596–1614, 1989.

[6] P. Popov and B. Littlewood, “The effect of testing on the reliability of fault-tolerant software,” in DSN 2004,

International Conference on Dependable Systems and Networks. Florence, Italy: IEEE Computer Society, 2004,

pp. 265–274.

[7] Y.C. Yeh, “Design Considerations in Boeing 777 Fly-By-Wire Computers,” in Proc. 3rd IEEE International

High-Assurance Systems Engineering Symposium, pp. 64, Washington DC, 1999

78

Session on Model-based
Verification

Chair: Paolo Masci, University of Pisa, Italy

79

80

Detecting data leakage in malicious Java applets1

Paolo Masci, Dip. di Ingegneria dell'Informazione, Università di Pisa

Web applets are programs dynamically loaded and executed inside the Internet browser of users' machines. They

are used to extend the functionalities of web pages. Web applets can be associated with specific profiles granting

access to users' information. As a consequence, web applets may possibly disclose, intentionally or by error,

confidential information on public channels. We propose a technique to analyze the compiled code of web

applets before execution. The technique is based on abstract interpretation. Users' data is associated with security

levels and an iterative analysis is performed to trace information flows.

Introduction

New generations of Internet services are heavily based on sensitive contexts. E�banking, e�commerce, data

streaming, they all require access to a number of users' data in order to be customizable. Classic html

programming language alone is unable to exploit these features. As a consequence, during the last few years web

pages have started to embed special objects in order to extend the capabilities of the html language. At the

moment, besides simple scripts that can change visual styles, web pages can also include programs written in a

number of different languages.

Web applets are programs written in Java [4]. They are one of the most widespread objects embedded inside web

pages. Basically, web applets are compiled Java programs that can be executed within the users' browser. They

generally have less capabilities than stand�alone programs since an access�control mechanism, called Java

sandbox, is used to limit their access rights to system resources. Nevertheless, the Java platform includes also

mechanisms for granting special rights to specific web applets. This necessity arises since useful programs

generally need users' data in order to perform a task. For example, a program for money transactions may require

access to a certificate or a key. Nevertheless, granting access rights for sensitive information may possibly cause

1 Joint work with M. Avvenuti, C. Bernardeschi, N. De Francesco

81

security issues since these information may be released on public channels. In fact certification systems, together

with access control mechanisms, are not able to detect leakage of data when programs have already gained

access to such data.

The security paradigm of the JDK 1.1 represents an emblematic case of study of a system providing an

access�control mechanism which is not able to detect leakage of sensitive data [2]. Security for JDK relies on the

identity base, that is an object containing a database of certificates and keys. This object is used as a central

repository to hold information useful for authentication purposes. Sensitive information, such as private keys, is

protected through interface methods, which means that data stored in the identity base can be obtained by

programs only through methods of predefined static classes (classes belonging to the java.security package, in

this case). This way, programs have access to public information, like public keys and certificates, but they

cannot read private keys. Private keys of the identity base can be accessed only by programs belonging to

security packages of the Java platform installed on the system. Applets cannot belong to such package.

Nevertheless, this paradigm is not secure since the identity base is stored in serialized form in a file, and applets

may read this file and send the serialized data to a malicious host through a socket connection. On the receiving

host an attacker can easily read private keys by deserializing the file directly on its own machine.

This shows that classic protection paradigms may not cover all possible unauthorized disclosure of data. As a

consequence, new mechanisms are needed to protect computer systems. In particular, the information leakage

mentioned above can be revealed by analyzing control flows in the programs. The theory that studies these

security issues is known in the literature as secure information flow [3].

1. Our contribution

We propose a technique to check secure information flow in Java programs, with specific reference to web

applets. The technique is based on a work proposed in [1], where a multilevel security policy that assigns

security levels to variables in the program is used. The bytecode is processed by an abstract interpreter through

an analysis that is similar to that of the bytecode verifier. The analysis is performed method by method,

assuming other methods correct when verifying a method. A context is used to maintain security levels of

methods and objects in the heap. The analysis abstracts real values of instruction operands into security levels,

which represent the maximum privacy level of data affecting such values. Sensitive data are marked with high

levels, and public channels with low levels. Security levels form a lattice, partially ordered by . A program

does not leak sensitive data if, on program end, channels with security level � contain data with level �.

The analysis is performed directly on the Java bytecode. Since the bytecode is unstructured, the analysis includes

also mechanisms to compute execution paths and scope of implicit flows. Execution paths are identified through

the control flow graph, that is a set of nodes representing instructions. Instructions are identified by numbers (the

position of the instruction in the code). There is an edge from node i to j if instruction j can be executed directly

after i. The scope of implicit flows is discovered through control regions. A control region is a subset of nodes in

the control flow graph, and represents the biggest set of instructions control dependent on a given conditional

instruction. A control dependence is defined as follows: instruction j is control dependent on i when i is a

conditional instruction (if, switch, ...) that determines whether an execution path will pass through j. Control

flow graph and control regions can be computed statically.

82

1.1. Rules of the abstract interpreter

The abstract interpreter uses a set of rules to model the behavior of the Java VM. Implicit flows are represented

in the rules by a local environment which reflects the security level of the control regions. There is a rule for

each kind of instruction. Each rule computes security levels on the basis of its own local environment and

operands.

The rules define a relation VV ��! , where V is the set of the abstract interpreter states. A state V V� has the

form <Q, SL, P>, where Q is the set of all machine states of the instructions, SL is a security table containing the

security levels of conditional instructions and entry point of a method, P is a security context. The abstract

interpreter builds a chain of machine states by applying the rules. The chain ends when no rule can be applied.

This corresponds to the end of the analysis, which happens in two cases: i) when a rule detects an illicit flow, ii)

when the security context is unchanged after analyzing all methods. In this last case the bytecode has secure

information flow, thus the program can be safely executed.

Each rule has a precondition and a postcondition. The precondition specifies the position of the instruction in the

bytecode and the state in which the instruction is executed. The postcondition defines how to compute the new

state of the nterpreter on the basis of the semantics of the instruction. The bytecode is modeled as an array called

B. The element at position i in the array corresponds to instruction at position i in the bytecode. Qi denotes the

state of instruction at position i. Every state Qi is a pair (M,St), where M is the memory and St is the operand

stack of the virtual machine. M(x) is a mapping from local variable x to security levels. St is a sequence of

security levels. The standard concatenation operator is · and the value on top of the stack appears on the left

hand�side of the sequence. The least upper bound operator between security levels is . The environment of

instruction at position i is denoted as env(i). Rule for the bytecode instruction �load x is shown here as example.

The instruction loads the content of register x on top of the operand stack.

B[i] = �load x, Qi = (M,St)

< Q, SL, P > � < Q[Qi+1 = Qi+1 (M, (env(i) M(x)) · St)], SL, P >

1.1. Software Tool

We developed a prototype tool that can be installed on users’ machines. The tool is composed of two

components: the browser agent (BaT) and the verifier tool (SifJVM). Calls to the Java VM are generated by the

browser when loading Internet pages. Basically, the agent BaT intercepts these calls, temporary blocks the

applet, and dispatches the bytecode to the verifier tool SifJVM. The verifier tool analyzes the information flow

in the applet and returns the final result to the agent. The agent enables applet execution only if the analysis

succeeds.

The agent is developed through the Java VM Tool Interface (JVMTI), that is publicly available from Sun.

JVMTI is a programming interface that notifies events to registered agents and provides mechanisms to control

the internal state of the Java VM. Agents are registered through a command�line option when starting up the

VM. The verifier tool is based on an open�source project of the Apache Foundation called ByteCode

Engineering Library (BCEL). It is a set of APIs used to reading and writing Java bytecode. The BCEL package

83

includes also a bytecode verifier called JustIce. The two main modifications to BCEL/JustIce were made to

handle security levels instead of types, and to implement the semantics for instructions according to our rules.

2. Conclusions

In this paper we presented the key points of an approach to check secure information flow in web applets. The

analysis is performed through abstract interpretation of the bytecode, where real values are replaced by security

levels of data affecting such values. The abstract interpreter models information flows through the semantic of

instructions and discovers illicit flows in a finite number of steps. We presented also the basic structure and

functionalities of a prototype tool that can be installed on users’ machines.

References

[1] R. Barbuti, C. Bernardeschi, and N. De Francesco. Analyzing Information Flow Properties in Assembly

Code by Abstract Interpretation. The Computer Journal, 2004.

[2] J.P. Billon. Security Breaches in the JDK 1.1 beta2 security API. 1997.

[3] D.E. Denning. A lattice model of secure information flow. Communications of the ACM, 1976.

[4] T. Lindholm and F. Yellin. Java Virtual Machine Specification, 2nd edition. Addison�Wesley Longman

Publishing Co., Inc., 1999.

84

Handling Large Models in Model-based Testing

Zoltán Micskei

Department of Measurement and Information Systems

Budapest University of Technology and Economics

Magyar Tudósok krt. 2., H-1117 Budapest, Hungary

micskeiz@mit.bme.hu

Introduction

Model-based testing [1] aims to partially automate the labor-intensive tasks in traditional software testing.

Creating an effective test suite containing relevant tests cases with input and expected output events needs

usually a lot of manual work and expert knowledge. Constructing first a model to use it later as a test oracle can

ease for example the test generation, conformance testing and test suite evaluation subtasks.

In the past years many research paper was published on model-based testing. The participants of the AGEDIS

[2] European Union project built their own tool chain supporting the whole testing process starting from

annotating the system’s UML model to assessing the test execution results. Ammann et al. [3] used mutation

analysis techniques to generate test cases from specification with the help of external model checkers. The BZ-

Testing-Tool [4] uses an underlying constraint solver to derive test suites according to various testing strategies

and coverage criteria. As we can see, numerous methods were proposed for model-based testing.

1. Test Generation using Model Checkers

In our previous work [5] we analyzed the effectiveness of different configurations of a model checker tool when

used for test generation purpose. Figure 1. depicts our whole tool chain. The model checker was utilized in the

test generation phase.

85

Test generation

Model

Criterion

Abstract

test cases
Test transformation

Implementation

Concrete

tests
Test execution

Test results ,

coverage

Figure 1. Testing framework

The main issue in using model checker tools is that the default configuration of these tools is optimized for the

exhaustive search of the full state space while test generation only needs to find a short counter-example

representing a test case. Fortunately, state-of-the-art model checkers provide a wide variety of options and

techniques to tune the behavior of the checker to fit for this special purpose. Our experiments with the SPIN

model checker showed that the proper configuration could decrease the execution time with more than 60%, not

to mention that the length of the test cases was reduced to 5% of the original test suite (generated by using the

default configuration).

The applicability of the framework was measured using a real-life industrial model. The main difference

compared to the previous experiments was the size of the state space. The statechart model that described a bit

synchronization protocol had 31 states and 174 transitions, resulting in a state space with more than 2�108 states,

which would need approximately 40 GB memory. State compression techniques and reduction of the behavior

were effective to make the test generation feasible. After applying all optimization the test suite covering all

states was created in 65 minutes. Thus, the framework turned to be applicable for large models as well, but the

practical limitations caused by the state space expansion and the long execution time cannot be fully avoided.

2. Techniques for Dealing with Complexity

The previous section showed that the bottleneck of using model-based testing methods is the size of real-life

models. Hence, we started to analyze the following methods to handle complexity.

Use of advanced model checking techniques: In the past years, bounded model checking was introduced [6],

which finds counter-examples very fast. This property is perfectly suited for test generation. Other benefit of the

technique is that it usually needs much less memory than explicit model checking or even symbolic techniques

using BDDs.

Combining model checking with other verification methods: A promising direction is to combine model checking

with other formal verification methods to generate test cases. Theorem proving is one of the candidates as stated

in [7] where the theorem prover was used to reduce the problem to a finite-state form.

Model-based slicing: Slicing [8] has a long tradition in program analysis. The main idea is to focus only on that

part of the program, which is relevant for the property currently checked. The other parts are temporally deleted,

thus the size of the program in question is significantly reduced. The same method could be used on the level of

the model, e.g. when searching for a test sequence satisfying a coverage criterion, only those parts of the model

are preserved, which can have influence on the given criterion.

86

A typical important verification task in a resilient system is to evaluate the protection and defense mechanism of

components. Although, these mechanism usually are of manageable size, their testing is not possible without

modeling also the complex components they protect. However, when testing a protection mechanism only a

small part of the component is relevant, i.e. where the fault occurred. The other parts do not influence the

outcome of the tests; hence, the behavior of them can be abstracted. That is why automatic abstraction and

efficient state space handling methods mentioned above play a key role in the verification of dependable

systems.

3. Conclusion

In this paper we presented the concept of model-based testing and our framework that supports test generation

using model checkers. We outlined the results obtained from experimenting with real-life models, it turned out

that the huge state space of industrial models require further optimization techniques. A key method to handle

complexity can be the use of various abstractions, e.g. model-based slicing and automatic theorem proving, to

focus only on relevant parts of the model. The integration of test generation with these abstraction techniques,

which proved themselves in many previous research projects, is a challenging open question. However, it is also

an opportunity to benefit from the expertise of fellow researchers in the network, and build methods reducing the

model-based testing problem to be applicable in everyday engineering use.

References

[1] M. Leucker et al. (Eds.), Model-Based Testing of Reactive Systems, Advanced Lectures, Series: Lecture Notes in
Computer Science, Vol. 3472, 2005, VIII, 659 p., ISBN: 3-540-26278-4, 2005.

[2] A. Hartman and K. Nagin, “The AGEDIS Tools for Model Based Testing,” in Proceedings of ISSTA 2004, Boston,
Massachusetts, USA, July 11-14, 2004.

[3] P. Ammann, P. E. Black, and W. Ding, “Model Checkers in Software Testing,” Technical Report, NIST-IR 6777,
National Institute of Standards and Technology, 2002.

[4] B. Legeard et al., “Automated Test Case and Test Driver Generation for Embedded Software,” in Proc. of
International Conference on Software, System Engineering and Applications, pp 34-39., 2004.

[5] Z. Micskei and I. Majzik, “Model-based Automatic Test Generation for Event-Driven Embedded Systems using
Model Checkers” to appear in Proc of DepCoS '06, Szklarska Por�ba, Poland, 25-27 May 2006.

[6] E. Clarke et al., “Symbolic Model Checking without BDDs,” in Proc. of Tools and Algorithms for Construction and
Analysis of Systems (TACAS ’99), Amsterdam, The Netherlands, March 22-28, 1999.

[7] N. Shankar, “Combining Theorem Proving and Model Checking through Symbolic Analysis”, CONCUR'00:
Concurrency Theory, LNCS 1877, pp 1-16, Springer Verlag, 2000.

[8] M. Weiser, “Program slicing,” in Proceeding of the Fifth International Conference on Software Engineering, San
Diego, CA, USA, pp 439-449, May 1981.

87

Testing applications and services in mobile systems

Nguyen Minh Duc

LAAS-CNRS, 7 avenue Colonel Roche, 31077 Toulouse France

minh-duc.nguyen@laas.fr

Abstract

Compared to “traditional” applications, mobile applications provide a new set of challenges from the

perspective of testing. These challenges have gained only little attention in the literature so far. The aim of

this paper is to give an analysis of the new problems raised by testing applications and services in mobile

settings, and to propose direction for my PhD work.

1. Introduction

Advances in wireless networking technology have yielded the emergence of the mobile computing

paradigm. Generally speaking, mobile computing calls for the use of mobile devices (handset, PDA,

laptop…) that move within some physical areas, while being connected to networks by means of wireless

links (Blue-tooth, IEEE 802.11, GPRS…). Two of the main characteristics of mobile applications and

services are mentioned below:

• High error rates. The movement of mobile devices causes disconnections. As a result, network topology

changes frequently. Moreover, limited capacity of mobile device, scarce bandwidth in wireless

connection… make the computation more difficult. This means that errors are likely to occur during the

operation of mobile systems.

• Context dependency. The context includes any detectable and relevant attribute of a device, of its

interaction with other devices and of its surrounding environment at an instant of time. The context is

continuously evolving, so that mobile applications have to be aware of, and adapt to, the induced

changes.

Such characteristics provide new challenges for the resilience technologies. As regards verification, the

development of appropriate technologies has been seldom explored so far, and remains an open issue.

The objective of my work is to develop solutions for the testing of applications and services in mobile

systems, with consideration for both functional and robustness requirements. This work has started in

November 2005, and is conducted in the framework of the European project HIDENETS (HIghly

Dependable ip-based NETworks and Services). HIDENETS aims to develop and analyze end-to-end

resilience solutions for distributed applications and mobility-aware services, taking the example of the

automotive domain with car-to-car and car-to-infrastructure communication scenarios.

The remainder of this paper is organized as follows: Section 2 discusses the specific issues raised by testing

mobile computing systems. Section 3 describes direction for my PhD work. The expected contribution

covers both the determination of test platforms to perform controlled experiments, and the definition of a

test strategy that combines contextual parameters with inputs liked to the logic of applications. Section 4

gives some concluding remarks.

3. Problems in testing mobile computing systems

Testing [1] is the most widespread verification technique. It consists in executing a system by supplying it

with input values. The outputs provided by the system in response to the inputs are then analyzed to

determine a verdict. The test activities generally involve several steps, each focusing on a given level:

testing at the unit level, integration testing, and system testing.

The problems raised by mobile computing systems are discussed hereafter, by considering both

fundamental issues of testing and technological issues. The fundamental issues are:

• The determination of testing levels;

• The test selection problem;

88

• The so-called oracle problem, or how to determine the correctness of the test outputs.

Technological issues concern the platform required to control and observe test experiments.

How to determine the testing levels for mobile-based applications and services?

The determination of a testing level requires the determination of the (sub-)system that will be the target of

testing, and of its interface to its surrounding environment. Typically, the testing levels are determined in

the framework of an integration strategy that progressively aggregates the system components until a

system level test is performed. For mobile applications in ubiquitous communication scenarios, a difficulty

is that the notions of system boundaries, and of system components, are not as clear as for traditional

applications. Let us take the example of a car application involving both car-to-car and car-to-infrastructure

communication. A single car can be the system under test, and the neighbouring cars and infrastructure

servers can be the environment. Or a car and an infrastructure server can be the target system, with the rest

of the world forming the environment. Or the target system can be a set of cars traversing a geographical

area, and the fixed infrastructure in that area is the environment, etc. Note that, at a given level, alternative

system instances can be considered (e.g., instances with sets of cars corresponding to different traffic loads).

Moreover the composition of the system may continuously vary during testing. Generally speaking, the

determination of the testing levels should depend on the target application and on the target properties to be

verified. To the best of my knowledge, there currently exists no practical guidelines to address this problem.

Which test selection technique to be used?

The traditional approaches in software testing can be classified into two categories: white-box selection

approaches, and black-box ones.

White-box approaches are based on structural coverage criteria. They are applied for small pieces of

software, typically at a unit testing level. An underlying assumption is that the behaviour of the target piece

of software is governed by its structure. But in mobile applications, this assumption may not hold. Software

running in mobile devices depends on not only the application logic, but also on conditions on contextual

parameters that are not explicit in the applicative code. Such a situation is exemplified by [2], where the

authors study a context-sensitive middleware-based application. The authors point out that, even for unit

testing, a traditional method (all-du coverage in this case) is not sufficient because the interesting contextual

conditions reside in the middleware, not in the applicative code.

Black-box approaches need a model of the functions of the application. To the best of my knowledge, there

is no standard specification language for mobile computing systems. Some authors propose using UML or

Mobicharts [3, 4, 5, 6], but the corresponding modelling approaches fail to account for all aspects of mobile

computing, such as network bandwidth, neighbouring devices… From the concrete examples of test

experiments reported in the literature, it seems that the typical practice is to select test cases manually from

the informal application requirements.

Hence, finding effective test selection techniques for mobile applications is still an open problem.

How to solve the oracle problem?

Developing an oracle procedure to compare actual test outputs with the expected ones is a fundamental

issue for software testing. The best solution is to have an automated oracle based on a formal specification.

However, as mentioned above, the specification of mobile applications is itself a problem.

Moreover, in mobile settings, it may be the case that part of the inputs is uncontrollable and unobservable.

For example, if a device is tested in a real environment, neighbouring devices can join and leave network in

an unpredictable manner. The resulting inputs for the target device cannot be determined, and the expected

outputs cannot be decided. The solution in this situation is to develop partial oracles that perform (weak)

plausibility checks. Examples of such oracles for mobile applications are provided in [7, 8].

Which test platform to be used?

A test platform must offer facilities to observe and control the transit of input and output events, received or

transmitted from each component. This is typically done by means of Points of Control and Observation

(PCO). A PCO can be global or local. In centralized test architectures, a global PCO is generally easier to

implement since only one PCO is needed. In distributed test architectures, local PCOs need to be

synchronized. Compared to traditional systems, mobile computing systems need a higher complexity of

89

PCOs in both cases, in order to adapt to the high dynamicity due to the mobility of entities and rich

contextual parameters.

The platform may be more or less realistic with respect to the operational environment. In practice, it is

difficult and expensive to test some mobile applications that require checking the combined logic of the

involved hardware and software components. For example, an application running in mobile terminals like

PDA, smart-phone… may have to be tested on different types of devices, and on different wireless local

networks. Or in automotive domain, realistic platforms involve prototypes that are implemented into real

cars (see e.g., [9]). The cost of such platforms, as well as controllability and observability constraints, imply

that part of the testing activities may preferably be performed using emulation/simulation facilities.

Generally speaking, there is a trade-off to be found between the need for realism, and the need to support

fine-grain control and observation to implement a given test strategy.

3. Contribution of the thesis

My work will focus on testing mobile applications and middleware services in a simulated environment. It

will be supported by case studies that are a relevant to the automotive domain. A discussion of the test

platform and test strategy to be considered is provided below.

Platform for testing

The test platform will consist of three categories of components: Application execution support, Network

simulator, and Context controller as shown in Figure 1. Concrete examples of platforms built according to

this generic architecture are provided in [10,11].

Figure1: Platform for test execution

The Application execution support is needed to emulate the executive support for the applicative code. A

requirement is to provide an interface to the context controller and network simulator, so that the

application can interact with them as if it would interact with a real environment.

Since applications and services connect over wireless link, the simulated environment must support a model

of the underlying network. The network simulator is responsible for simulating the full functionality of a

real wireless network: different types of wireless connection, account for location information of mobile

devices participating in network, failures of mobile devices or wireless links… Network simulators like ns-

2 or GlomoSim can be used.

The context controller is needed to simulate context information. Applications exploit context information

to take different actions adaptively. Context is also needed by the network simulator to set up input

parameters for imitating the real network characteristics. There have been several toolkits for simulating

contexts in recent years. Some of them are built on 3D game engines and serve to simulate a first-person

view of the physical environment, like Ubiwise [12]. In our case, we are planning to use either a generic

location event simulator, like the GLS tool developed at Cambridge [13], or a microscopic traffic simulator

as suggested by [10] for testing car-to-car communications application.

This simulated environment needs PCOs to control and observe the test experiments. Depending on the

target application and test strategy developed, PCOs can be integrated in each component or can be realised

as a global component added to the architecture.

90

Test strategy

I will investigate model-based strategies for testing both functional and robustness requirements. As the

specification of mobile computing systems is not a mature issue, a first step will be to investigate adequate

models for both the application functions, and their environment. The specification of the environment,

including the threats that may affect the application, is expected to be the most challenging issue.

As regards test selection, compared to traditional software, there is a shift in the number and nature of input

parameters to be considered: contextual parameters and their variation over time have to become first-class

citizens. There is a need for methods to combine these parameters with inputs linked to the logic of

applications, so as to obtain effective test data at a realistic expense of effort. At LAAS-CNRS, there is a

long experience on model-based probabilistic methods for test generation [14]. Such probabilistic methods

should be relevant to account for the uncertain characteristics of the environment, and to guide the sampling

of meaningful input combinations.

4. Concluding remarks

Testing applications and services in mobile computing systems is a challenging issue that has been little

addressed so far. The problems presented in this paper are expected to share commonalities with problems

addressed by other resilience technologies. In particular, for the kind of systems that are targeted, the

specification problem arise whatever the verification technology, testing or formal verification. Testing and

experimental evaluation may share common requirements for test platforms allowing to perform controlled

experiments. The student forum should be an opportunity to initiate discussion on these topics.

References

[1] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990

[2] T.H. Tse, Stephan S. Yau, W.K. Chan, Heng Lu. Testing Context-Sensitive Middleware-Based Software

Applications, Proceedings of the 28th Annual International Computer Software and Application

Conference (COMPSAC 2004), pp.458-466, IEEE CS Press, 2004.

[3] Satyajit Achrya, Chris George, Hrushikesha Mohanty. Specifying a Mobile Computing Infrastructure

and Services, 1
st

International Conference on Distributed Computing and Internet Technology (ICDCIT

2004), LNCS 3347, pp.244-254, Springer-Verlag Berlin Heidelberg, 2004

[4] Satyajit Acharya, Hrushikesha Mohanty, R.K Shyamasundar. MOBICHARTS: A Notation to Specify

Mobile Computing Applications. Proceedings of the 36th Hawaii International Conference on System

Sciences (HICSS’03), IEEE CS Press, 2003.

[5] Vincenzo Grassi, Raffaela Mirandola, Antonino Sabetta. A UML Profile to Model Mobile Sytem, UML

2004, LNCS 3273, pp.128-142, Springer-Verlag Berlin Heidelberg, 2004

[6] Hubert Baumeister et al. UML for Global Computing. Global Computing: Programming Environments,

Languages, Security, and Analyisis of Systems, GC 2003, LNCS 2874, pp. 1-24, Springer-Verlag Berlin

Heidelberg, 2003

[7] W.K. Chan, T.Y. Chen, Heng Lu. A Metamorphic Approach to Integration Testing of Context-Sensitive

Middleware-Based Applications, Proceedings of the 5th International Conference on Quality Software

(QSIC’05), pp.241-249, IEEE CS Press, 2005

[8] Karl R.P.H Leung, Joseph K-Y Ng, W.L. Yeung. Embedded Program Testing in Untestable Mobile

Environment: An Experience of Trustworthiness Approach, Proceedings of the 11th Asia-Pacific Software

Engineering Conference, pp.430-437, IEEE CS Press, 2004

[9] de Bruin, D.; Kroon, J.; van Klaverem, R.: Nelisse, M.. Design and test of a cooperative adaptive cruise

control system, Intelligent Vehicles symposium, pp.392-396, IEEE CS Press, 2004

[10] Christoph Schroth et al. Simulating the traffic effects of vehicle-to-vehicle messaging systems,

Proceedings of ITS Telecommunication, 2005

[11] Ricardo Morla, Nigel Davies. Evaluating a Location-Based Application: A Hybrid Test and Simulation

Environment, IEEE Pervasive computing, Vol.3, No.2, pp.48-56, July-September 2004

[12] J.Barton, V. Vijayaragharan. Ubiwise: A Simulator for Ubiquitous Computing Systems Design,

Technical report HPL-2003-93, Hewlett-Packard Labs, 2003

[13] Kumaresan Sanmiglingam, Geogre Coulouris. A Generic Location Event Simulator, UbiComp 2002,

LNCS 2498, pp.308-315, Springer-Verlag Berlin Heidelberg, 2002

[14] P. Thévenod-Fosse, H. Waeselynck and Y. Crouzet, “Software statistical testing”, in Predictably

Dependable Computing Systems, Springer Verlag, pp. 253-272, 1995

91

Behavior-Driven Testing of Windows Device Drivers

Constantin Sârbu

Department of Computer Science – Technische Universität Darmstadt

Hochschulstr. 10, 64289, Darmstadt, Germany

Email: cs@informatik.tu-darmstadt.de

1. Introduction

Commercial-off-the-shelf operating systems (COTS OSs) increasingly favor adaptability to support

diverse application and hardware peripherals in detriment to targeting robustness of OS services. The COTS OSs

interface to hardware devices is provided by the device-drivers1. Furthermore, drivers have themselves become

add-on COTS components, enhancing OS’s adaptability. Unfortunately, drivers constitute a prominent cause of

computer system outages, impacting overall service reliability [5].

We note at least two facts that might explain why the drivers are the weak link in a computer system

equipped with a COTS OS. First, drivers are relatively immature pieces of software, exhibiting a higher defect

density compared with the OS kernel. One reason is that many hardware producers are forced by fierce

competition to push their new peripherals onto the market before they could be tested properly. Additionally, the

set of loaded drivers is likely to be different across installations. The difficulty to define all the interactions with

other drivers or parts of the system significantly reduces the effectiveness of design-stage driver testing.

Therefore, assessing continuous service provision in different environments and system configurations is still a

difficult problem to solve.

Related Work: As drivers are COTS add-on components, they are delivered as binaries without source

code. Thus the component-user’s test campaigns are often limited to a black-box testing strategy, using only the

OS driver interface specification. Several approaches have used Fault Injection (FI) techniques [1, 5] to test

black-box OS extensions. The location of injection probes and the triggering instance of the actual fault injection

1 Onwards, we use the general term “drivers” to refer to them

92

are either empirically or randomly chosen. Though, in the area of defect localization in software, research

showed that faults tend to cluster in certain parts of the code [2]. Along the same line, another idea is to focus

testing on functionalities that have a high probability of occurrence in the field [7].

In our current work2 we provide COTS component-users with novel, non-intrusive methods for assessing the

level of system robustness for a given HW/SW configuration. Based on ascertaining test progress from a driver-

under-test operational state model, our scheme enhances the level of accuracy of existing test procedures.

2. System Model

By COTS OS we imply any monolithic operating system, designed for general purpose and not for

specialized needs (i.e., not real-time, safety-critical or high-availability systems). The OS is acting both as

hardware resource manager and as an execution platform for applications. We have used Microsoft Windows XP

as a case study (its OS-driver interface, to be more specific), but porting our approach to other operating systems

is part of our ongoing work.

...Application 1 Application p

Driver 1

System Services

Other OS

Facilities

I/O

Manager

Hardware layer

USER SPACE

OS KERNEL

SPACE

HW SPACE

...

Driver 2

Driver 3 Driver m

Figure 1. A system equipped with a COTS OS.

Our model is divided into three layers: (a) User space, (b) OS kernel space and (c) Hardware space (see

Figure 1). The two dashed lines represent communication interfaces between two neighboring layers of the

considered system. For instance, an application wants to access a file stored on the local hard drive. The request

will be passed to the OS by means of standardized calling methods defined in the System Services layer. Further

on, the command is handled by the I/O Manager, which transform it into a request to the device driver

responsible for managing the hard drive. In most COTS OSs available today the drivers are implemented as

software running in a privileged address space, i.e., kernel space. They act as a buffer between hardware layer

and the rest of the OS kernel. Consequently, testing drivers properly is difficult. If something goes wrong and the

driver is not able to properly handle the exceptional situation, the error can propagate to sensitive parts of OS

and may cause instability or crash the entire system, reducing system’s ability to provide the specified level of

service.

2 This work has been supported, in part, by EC FP6 IP DECOS, NoE ReSIST and also by Microsoft Research

93

2.1. Windows Driver Model

To standardize and simplify the OS driver interface inside the kernel space, Microsoft defined a unified

communication framework, called WDM (Windows Driver Model)[3]. A WDM driver have to comply with

certain rules for design, implementation, initialization, plug-and-play, power management, memory access etc.

We are particularly interested in the way that I/O Manager communicates with the drivers, which we called

WDM communication interface.

A driver (as defined in the WDM model) can be assimilated to a toolbox. It contains a set of highly

specialized procedures, each one being executed upon receipt of a specific request. Every time such a request is

sent to the driver, it will execute the associated procedure.

These commands are issued by the I/O Manager (see Figure 1). They are called I/O Request Packets (IRPs)

and are OS kernel structures which contain a request code and all the necessary parameters needed by the driver

to service the particular IRP request. The driver receives the IRP request and, following its processing, a result of

the operation is returned to the caller using the same IRP structure.

2.2. Driver Modes and Mode Graph

From a robustness testing perspective (for instance SWIFI testing) it is important to accurately pinpoint what

function the system under test is executing at any moment in time. Therefore, the software testing community is

actively researching methods to define the state of such a system. In the case of static software systems this task

is relatively simple but for operating systems this is non-trivial. OSs are complex software, very dynamic and

often entail a low level of determinism.

Assuming a black-box driver-under-test, our work [4] provided state identification methods only with regard

to the functionality currently in execution (i.e., as observed from the OS driver communication interface).

The driver mode is defined at a specific instance in time, with respect to the IRP requests the driver is

executing at that moment, as a tuple of boolean values, each assigned to one of the n IRPs that the driver

supports:

< PIRP1, PIRP2, …, PIRPn >

where PIRPi (1� i � n) shows the current driver activity with respect to IRPi, as below:

Knowing n we can build the mode graph, i.e., the complete set of tuples that represent all the different

modes the driver can be in. Since modes are represented by binary strings, there are 2n distinct modes in the

graph (Figure 2). Transitions between modes are triggered either by receipt of an IRP or by finishing the

execution of the functionality associated with an IRP.

PIRPi The driver-under-test is

1 performing the functionality associated with IRPi;

0 otherwise.

94

1000

0000

0100 0010 0001

1100

Active

IRPs

0

1010 1001 0011 01010110

1110 1101 1011 0111

1111

1

2

3

4

Figure 2. Driver supporting four distinct IRPs.

We assume that the driver receives and finishes the execution related to IRP requests in a sequential manner,

i.e., only one bit is flipped at a time. Therefore, a driver can switch only to a mode whose binary string is within

Hamming distance of 1 from the current mode.

In [4] we proposed three metrics for testing coverage of the mode graph of the driver-under-test: (a) Mode

Coverage, (b) Transition Coverage and (c) Path Coverage. For a complete test coverage of our operational

model, a testing process should satisfy all of them at the same time, but the measures are also useful as an

indication of the testing progress.

3. Experiments, Results and Issues

To validate the presented approach, we conducted experiments to monitor the operational behavior of the

serial driver provided with Windows XP Pro SP2.

0010100

0100110

0110011

0110111

1010110

1101011

1110111

1111111

Figure 3. Visited modes and traversed edges.

Small visited mode space size: Using a relevant workload for the serial driver (commercial benchmark

applications), we observed that only a very small part of the driver’s mode graph is actually visited in the

operational phase (Figure 3, shaded part in gray). Some FI testing methods [1, 6] inject errors only on the first

occurrence of an event, therefore being limited to few of the modes. Our experiments revealed the modes and

transitions having a high likelihood to be reached in the field, indicating the driver functionality that should

primarily be targeted by the testing method of choice.

95

Wave testing: Generating the IRP sequences necessary to put the driver in a mode of interest can be difficult

(i.e., for deeper modes), as the receipt and return of an IRP are events occurring in a non-deterministic manner.

Therefore, we suggest using the following technique for testing:

1. test all the visited modes, accessing the same traversed edges;

2. identify modes accessible via one-hop from modes tested at step 1;

3. repeat steps above until no visitable modes.

< CREATE | POWER | DEVICE_CONTROL | WRITE | READ | CLEANUP | CLOSE >

0000000

0001000

14

0000010

1

0000100

14

0000001

1

0010000

60

1000000

1
14

0100001

1

1
14 1 60 1

1100000

1
1 1

1000000

1100000

Figure 4. A detail of Figure 3, with respective IRPs.

Focused testing: Figure 4 contains only the details of the visited modes from Figure 3. We counted the

number of times each transition was traversed, and observed that some of the modes were preferentially visited

under the given workload. A superficial interpretation of this result might be to focus the testing strategy onto

these highly accessed modes. Though, the less visited modes should not be ignored by testers, since they are

associated with initialization / cleanup of the driver. Therefore, we identified the need to further develop our

method to include a semantical ranking within distinct IRPs (and implicitly, within driver modes).

4. Discussion and Future Work

Our contribution provides means that precisely quantifies the test progress of already existing testing

methods for COTS drivers. The experimental results are important, indicating relevant locations to focus the

testing strategy (i.e., put high priority on testing modes and transitions visited in the field). Additionally, this

methodology can be used for application profiling, for instance certain applications can be monitored to build

behavioral patterns of driver usage (useful for security attack detection, debugging or dependability assessment).

Next, we will try to monitor the tools provided by Microsoft as driver robustness tests (dc2.exe, included in

the WDM package). DC2 stress the target driver by sending billions of IRPs to it, with and without malformed

parameters. We intend to identify the modes which are left un-visited by the test and assess their impact on

driver robustness.

96

References

[1] A. Johansson and N. Suri. Error Propagation Profiling of Operating Systems. International Conference on

Dependable Systems and Networks, 2005.

[2] K.-H. Möller and D. Paulish. An Empirical Investigation of Software Fault Distribution. International

Software Metrics Symposium, 1993.

[3] W. Oney. Programming the MS Windows Driver Model. Microsoft Press, Redmond, Washington, 2003.

[4] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Improving Robustness Testing of COTS OS Extensions.

International Service Availability Symposium, 2006.

[5] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of Commodity Operating Systems.

ACM Trans. Comput. Syst., 2005.

[6] T. Tsai and N. Singh. Reliability Testing of Applications on Windows NT. In International Conference on

Dependable Systems and Networks, 2000.

[7] E. J.Weyuker. Using Operational Distributions to Judge Testing Progress. In ACM Symposium on Applied

Computing, 2003.

97

On Exploiting Symmetry To Verify Distributed Protocols *

Marco Serafini

DEEDS Group

Department of Computer Science

Technische Universitat Darmstadt (TUDA), Germany

marco@deeds.informatik.tu-darmstadt.de

Péter Bokor

FTSRG Group and DEEDS Group (at TUDA)

Department of Measurement and Information Systems

Budapest University of Technology and Economics

petbokor@mit.bme.hu

Introduction

Amongst varied V&V approaches, formal verification is seeing increased usage and acceptance. One popular

techniques is model checking that allows for automated verification (without user guidance) by performing

exhaustive simulation on the model of the system. However, model checking faces the problem of state space

explosion. Our ongoing research aims at proposing a method to facilitate the model checking of a class of

distributed protocols by reducing the size of the associated state space.

Abstraction is a general method to reduce the level of detail in order to reduce the complexity of analysis. We

present an abstraction scheme which is aimed at verifying core fault tolerant protocols of frame-based,

synchronous systems (e.g consensus, atomic broadcast, diagnosis, membership). The idea is that, instead of

modeling every single node explicitly, we represent only one correct node (we term this the one-correct-node

abstraction) that captures overall symmetry as feasible. The rationale for our abstraction is that the protocols

under analysis often entail symmetry in their assumptions (A1) synchronous and symmetric communication

among correct nodes, that (A2) every correct node executes the same program, (A3) a quorum of correct nodes,

stated by the fault assumption, is always present in the system. Furthermore, we are interested in verifying (A4)

non-uniform properties, i.e., no restrictions are required on the internal state of faulty processors.

Note that even when (A1)-(A3) hold, the internal state of correct processors may differ, e.g. due to asymmetric

broadcast of a faulty node. To capture this asymmetry we assign non-deterministic values to the possibly affected

* This research is supported in part by Microsoft Research, FP6 IP DECOS and NoE ReSIST

98

variables. In spite of that, the amount of correct information symmetrically exchanged by the quorum of correct

nodes must be sufficient to guarantee a coordinated behavior of the quorum itself.

Section 1 presents a case study to demonstrate the idea of our abstraction. For any abstraction it is necessary to

prove that the abstraction function is sound and complete, i.e., it is property preserving. In general the

abstraction is said to be property preserving if for any valid formula
Af the following holds:

A
M

�
Af M f , where M (f) and

A
M (

Af) stand for the concrete and abstract model (formula),

respectively. Section 2 elaborates how to prove the soundness of our abstraction scheme, while Section 3

describes our future work.

1. Interactive Consistency - A Case Study

The problem of distributing data consistently in the presence of faults is variously called interactive consistency,

consensus, atomic broadcast, or Byzantine agreement. When a node transmits a value to several receivers, we

mandate that the properties of agreement (all non-faulty receivers adopt the same value, even if the transmitting

node is faulty) and validity (if the transmitter is non-faulty, then non-faulty receivers adopt the value actually

sent) hold. In this example we consider an interactive consistency protocol consisting of many parallel instances

of the classical binary consensus [Lamport et al. 1982] where the maximum number of byzantine faults is m = 1.

The protocol proceeds through of the following steps: Step 1 every processor i acts as a sender and broadcasts its

value
i

v , Step 2 every processor j receives and re-broadcasts ij
v to every other node (ij

v is the value of

processor i as received by j), Step 3 all nodes receive and adopt the majority value among ij
v ,

],...,1,1,...,1[niij +�� , if such a value exists, otherwise an a priori known default value is adopted.

Table 1 depicts the internal state of a correct node after executing the first two steps of this protocol. In this

example the system contains n = 4 > 3m nodes and node 3 is byzantine. In the table, ij
v refers to the value sent

by processor j in Step 1 as received by i and re-broadcasted in Step 2. The fact that nodes do not re-broadcast

their own value in Step 2 is expressed by
ii

v = ” � ”. Without loss of generality we consider the case where

correct nodes send 0 as their own value. Since node 3 is faulty it may send different values to the other nodes in

Step 1. Furthermore, in Step 2 the values received from the other nodes can be rebroadcasted arbitrary. This

asymmetry is expressed by the values in {1, 0} in column 3 and row 3 respectively. The majority voting of Step

3 is executed across each column I to obtain the values to adopt for
i

v .

Our abstraction scheme models all correct nodes using only one correct node. Faulty nodes are not modeled as

agreement and validity are non-uniform properties. To model the presence of asymmetric faults we add

nondeterminism to the internal state of the one-correct-node: both column 3 and row 3 are assigned non-

deterministic values, though with a different semantic. While the 3rd column is consistent for every correct node

due to (A1), row 3 may differ from node to node (even if they are correct), as the faulty node can re-broadcast

different values to different nodes in Step 2.

99

Senders

Re-broadcaster 1 2 3 4

1 - 0 1/0 0

2 0 - 1/0 0

3 1/0 1/0 - 1/0

4 0 0 1/0 -

Table 1 - Interactive Consistency: internal state

In general we need to show that the abstract properties hold. Intuitively, for
A

agreement , we need show that for

any arbitrary, non-deterministic value the majority voting gives the same outcome, while
Avalidity requires that

if node i is correct (in our case nodes 1, 2 and 4) the value adopted by the one-correct-node is indeed that value

sent by node i (0 in the example). Table 1 directly shows both properties to hold. For agreement, column 3 is

consistent for every correct node, and majority voting over it will result in a consistent outcome. For validity, the

fault assumption of [Lamport et al. 1982] (n > 3m) guarantees a sufficient quorum of correct values to outvote

the non-deterministic values, which become irrelevant. To prove that the abstraction is sound we have to show

that agreementagreement
A

� and validityvalidity A
� hold.

2. Symmetry Reduction

In general it might be cumbersome to prove the soundness of the abstraction for any valid formula. We aim at

establishing a general abstraction scheme, which poses no restriction to the formula of interest, by proving that

our approach is a case of symmetry reduction [Clarke et al. 1993]. This would ensure that our one-correct-node

abstraction is sound and complete. In fact, symmetry reduction, states that if the state transition graph exhibits

defined morphisms, then property preserving abstractions (expressed in form of permutation sets) can be

defined.

To assess the applicability of the abstraction two aspects have to be considered. First, we are interested in the

gain of the approach, i.e. to which extent the abstraction reduces the state space. This also involves experiments

comparing the computational complexity of the concrete and abstracted model checking problem run by specific

model checkers. Initial measurements performed using the SRI-SAL model checker [de Moura 2004] on a

diagnostic protocol [Walter et al. 1977] have shown a considerable reduction.

The other aspect is to define the class of protocols for which the abstraction is applicable. So far we considered

synchronous communication among nodes and we successfully applied the approach to membership and

diagnosis algorithms, all of them as specific cases of the consensus problem. We would like to extend our

approach also to approximate agreement protocols, used for clock synchronization, and consensus in

asynchronous systems and hybrids. Note that, in general, while symmetry is ensured by the synchrony of the

frame-based communication scheme, our abstraction, as it is currently defined, can not be directly applied to

100

asynchronous protocols, where correct nodes can also receive different subsets of the values sent by the other

correct nodes.

3. Conclusion & Future Work

For distributed protocols, we propose a symmetry based abstraction to decrease complexity of model checking

by reducing the size of the state space. Our ongoing research addresses three aspects: (a) soundness of the

abstraction by proving that it reduces to a special case of symmetry reduction [Clarke et al. 1993]; (b) explore

boundaries of applicability of the approach; (c) quantify effectiveness of the abstraction using different model

checking techniques (e.g. symbolic and bounded model checking).

References

[Clarke et al. 1993] Edmund M. Clarke, Thomas Filkorn, Somesh Jha, “Exploiting symmetry in temporal logic

model checking”, In CAV ’93: Proceedings of the 5th International Conference on Computer Aided Verification,

pages 450–462, London, UK, 1993, Springer-Verlag

[de Moura 2004] Leonardo de Moura, Sam Owre, Harald Rueß, John M. Rushby, Natarajan Shankar, Maria

Sorea, Ashish Tiwari: “SAL 2”, CAV 2004: 496-500, 2004

[Lamport et al. 1982] L. Lamport, R. Shostak, M. Pease, “The byzantine generals problem”, ACM Transactions

on Programming Languages and Systems, 4(3), 1982

[Walter et al. 1977] Chris J. Walter, P. Lincoln, N. Suri, “Formally verified on-line diagnosis”, IEEE

Transactions on Software Engineering, 1997

101

102

Session on Diversity

Chair: Ilir Gashi, CSR, City University, UK

103

104

Potential for Dependability Gains with Diverse Off-The-Shelf

Components: a Study with SQL Database Servers

Ilir Gashi

Centre for Software Reliability, City University London

Email: I.Gashi@city.ac.uk

Introduction

Fault tolerance is often the only viable way of obtaining the required system dependability from systems built

out of “off-the-shelf” (OTS) products. In particular, modular redundancy with diversity may be an affordable

solution, especially since the individual components may be available at little or no cost. Little empirical

evidence however exists about the practical dependability benefits of employing diverse redundancy with OTS

components. We have conducted two studies with sample of bug reports from six off-the-shelf SQL servers

(from four different vendors) so as to estimate the possible advantages of software fault tolerance - in the form of

modular redundancy with diversity - in complex off-the-shelf software. We found that very few bugs cause

coincident failures in more than one server. None of the bugs in our study caused failures in more than two

different-vendor servers. Therefore, a fault-tolerant server, built with diverse off-the-shelf servers, seems to have

a good chance of delivering improvements in availability and failure rates compared with the individual off-the-

shelf servers or their replicated, non-diverse configurations.

1. Motivation

When dependability improvements are sought for systems built out of off-the-shelf components fault tolerance is

often the only possible way of obtaining them. Various design solutions exists for implementing fault tolerance

105

ranging from simple error detection and recovery techniques [1] to replication with diverse versions of the

components, i.e. “diverse modular redundancy”. These solutions are well known in the literature. The question

remains however about the actual dependability improvements that can be expected from employing them.

To study these issues for a complex category of off-the-shelf components, we have chosen SQL database

servers. Developing an SQL server using design diversity (e.g. several of-the-shelf SQL servers and suitably

adapted “middleware” for replication management) requires strong evidence of dependability benefits it can

yield: for example empirical evidence that likely failures of the SQL servers, which may lead to serious

consequences, are unlikely to be tolerated without diversity. We investigated such empirical evidence. We

sought to demonstrate whether design diversity has a potential to deliver significant improvement of

dependability of SQL servers, compared to solutions for data replication that can only tolerate crash failures. The

only direct dependability evidence that is available for the SQL servers are their fault reports. Therefore a

preliminary evaluation step concerns fault diversity rather than failure diversity. By manual selection of test

cases, one can check whether the diverse redundant configuration would tolerate the known bugs in the

repositories of bugs reported for the various OTS servers. To this end I conducted two studies with SQL servers

from four different vendors, both commercial and open-source. I collected known bug reports for these servers.

For each bug, I took the test case that would trigger it and ran it on all four servers (if possible), to check for

coincident failures. I found the number of coincident failures to be very low. Results of the first study have been

reported here [2]. A paper is in preparation for the results of the second study and I will give a preview of the

results observed.

2. Results

Two commercial (Oracle 8.0.5 and Microsoft SQL Server 7 (without any service packs applied)) and two open-

source (PostgreSQL 7.0.0 and Interbase 6.0) SQL servers were used in the first study. Interbase, Oracle and

MSSQL were all run on the Windows 2000 Professional operating system, whereas PostgreSQL 7.0.0 (which is

not available for Windows) was run on RedHat Linux 6.0 (Hedwig). The study was conducted as follows. The

known bugs for the OTS servers are documented in bug report repositories (i.e. bug databases, mailing lists etc).

Each bug report contains the description of what the bug is and the bug script (SQL code that contains the

failure triggering conditions) required to reproduce the failure (the erroneous output that the reporter of the bug

observed). In our study I collected these bug reports and ran the bug scripts in the servers (we use the phrase

“running a bug” for the sake of brevity). I collected a total of 181 bug reports. The full results were reported here

[2]. The main findings were:

• very few bugs affect two of the four servers, and none affect more than two. Moreover only four of these

bugs would cause identical, undetectable failures in two servers. Fault-tolerant, diverse servers therefore

seem to have a good chance of improving failure rates and availability.

• it may be worthwhile for vendors to test their servers using the known bug reports for other servers. For

example, we observed 4 MSSQL bugs that had not been reported in the MSSQL service packs (previous

to our observation period). Oracle was the only server that never failed when running on it the reported

bugs of the other servers;

• the majority of bugs reported, for all servers, led to “incorrect result” failures (64.5%) rather than crashes

(17.1%) (despite crashes being more obvious to the user). This is contrary to the common assumption that

106

the majority of bugs lead to an engine crash, and warrants more attention by users to fault-tolerant

solutions, and by designers of fault-tolerant solutions to tolerating subtle and non fail-silent failures.

The results of the first study were very intriguing and pointed to potential for serious dependability gains from

using diverse off-the-shelf SQL servers. However these results concern only a specific snapshot in the evolution

of these products. We therefore decided to repeat the study for later releases of these servers. I collected 92 new

bug reports for the later releases of the open-source servers: PostgreSQL 7.2 and Firebird 1.01. We decided not to

collect any bug reports for the closed-development servers as the reproduction scripts needed to trigger the fault

were missing in most of them (but I still ran these bug scripts on the two commercial servers). We are currently

preparing a paper to detail the findings (the full raw data can be found here [3]). The main findings include:

• we again found very few bugs that caused failures in two of the servers and none that caused failures

in more than two. From the bugs collected in the second study, only one caused identical non-self

evident failures on more than two different-vendor servers and this was only on a few demands. The

percentage of crash failures was again observed to be significantly lower (19%) then “incorrect

result” failures (65.5%). This further confirmed our observations from the first study.

• I also ran the bugs reported for the new releases on the servers in the older releases of those servers,

and vice versa. We observed that for PostgreSQL the gains are quite significant. Most of the old bugs

had been fixed in the new version and moreover a large proportion of the newly reported bugs did not

cause failure (or could not be run at all) in the old version. This would suggest that a limited amount

of dependability improvements can be gained by at least running different releases of a server from

the same vendor in a fault-tolerant configuration.

We also studied the mechanism of “data diversity” [4] and its application with SQL servers in aiding with failure

diagnosis and state recovery. We defined 14 generic rephrasing rules to be implemented in a ‘rephrasing’

algorithm which when applied to particular SQL statements will generate logically equivalent statements. We

applied these rules to the bugs reported for the open-source servers and found that the rephrased statements were

‘workarounds’ for a significant number of these bugs.

3. Ongoing and Further Work

The results are intriguing and point to a potential for serious dependability gains from assembling a fault tolerant

server from two or more of these off-the-shelf servers. But they are not definitive evidence. Apart from the

sampling difficulties caused, e.g. due to a lack of certain bug scripts, it is important to clarify to what extent our

observations allow us to predict such gains. We have provided a discussion here [2] of the extent to which we

can extrapolate from the count of common bugs to reliability of a diverse server taking into account the various

complications that arise due to:

• the difference between fault records and failure records

• imperfect failure reporting

1 Firebird is the open-source descendant of Interbase 6.0. The later releases of Interbase are issued as closed-development

by Borland.

107

• variety of usage profiles.

Further work in this direction is the extent to which the existing reliability growth models (e.g. the Littlewood

model [5]) can be utilised for reliability predictions of a 1-out-of-2 system built out of off-the-shelf components

using the observations we have. The work on this has already started.

References

1. Popov, P., et al. Protective Wrapping of OTS Components in 4th ICSE Workshop on Component-Based

Software Engineering: Component Certification and System Prediction, 2001, Toronto.

2. Gashi, I., Popov, P., Strigini, L. Fault diversity among off-the-shelf SQL database servers in DSN'04

International Conference on Dependable Systems and Networks, 2004, Florence, Italy, IEEE Computer Society

Press, p. 389-398.

3. Gashi, I., Tables containing known bug scripts of Firebird 1.0 and PostgreSQL 7.2. 2005

http://www.csr.city.ac.uk/people/ilir.gashi/Bugs/.

4. Ammann, P.E. and J.C. Knight, Data Diversity: An Approach to Software Fault Tolerance, IEEE

Transactions on Computers, 1988, C-37(4), p. 418-425.

5. Littlewood, B., Stochastic Reliability Growth: a Model for Fault-Removal in Computer Programs and

Hardware Designs, IEEE Transactions on Reliability, 1981, R-30(4), p. 313-320.

108

Improvement of DBMS Performance through Diverse

Redundancy

Vladimir Stankovic

Centre for Software Reliability, City University, Northampton Square, London EC1V 0HB, UK

http://www.csr.city.ac.uk

V.Stankovic@city.ac.uk

1. Introduction

The most important non-functional requirements for a Database Management System (DBMS) are performance

and dependability. Often a trade-off between the two is required to satisfy opposing priorities set for the system.

Data replication has proved to be a viable method to enhance dependability and performance of DBMSs. The

common assumption that fail-safe failures, i.e. crashes, are the foremost problem to be solved in order to

improve system dependability has been refuted in [1]. Hence the diverse redundancy would deliver

improvements in failure rates and availability compared with non-diverse redundancy or individual server

configurations. A possible architecture for a fault-tolerant server employing (diverse) redundancy is depicted in

Figure 1.

Figure 1. Fault-tolerant server node (FT-node) with two (possibly more) diverse DBMSs. The middleware

“hides” the servers from the clients (1 to n) for which the data storage appears as a single DBMS

Can one also obtain performance gains? The response time of SQL (Structured Query Language) statements

might vary among diverse servers. For example, the respective execution plans will be different or concurrency

control mechanisms will vary. Also systematic differences between the execution times of different transactions

might exist when diverse servers are employed. The differences could lead to improved performance. We are

particularly concerned with a regime of operation of the FT-node that will favour performance – optimistic

regime of operation. For this regime the only function of the middleware is to translate the client requests, send

them to the servers and as soon as the first response is received, return it back to the client (see Figure 2). If the

faster response comes from different servers depending on the SQL statement, then the optimistic regime will

give a faster service than the faster of the two servers (provided the overhead of the middleware is not too high

compared with the response times of the servers). This happens if the sum of the transport delay to deliver the

fastest response to the client, the client’s own processing time to produce the next SQL statement, and the

transport delay to deliver the next SQL statement to the middleware is longer than the extra time needed by the

DBMS 1

…

DBMS 2Client n

Client 1

MIDDLEWARE

109

slower server to complete SQL statement processing (the red dashed rectangle indicates that DBMS 2 would not

be ready to start the (n+1)
th

SQL statement at the same time with DBMS 1). In this case, both (or all) servers will

be ready to take the next SQL statement and the race between them will start over. In more dependable set-up a

different type of regime can be envisaged. The middleware validates the results of executing each SQL

statement. It waits for responses from both servers, checks if the two responses are identical and, in case they

differ, initiates recovery.

Data consistency in database replication is usually defined in terms of 1-copy serialisablity between the

transactions’ histories executed on multiple nodes [2]. On transaction boundaries, the middleware running in

optimistic regime waits for the slower server in order to preserve data consistency. This approach can be

combined with other eager approaches that combine non-diverse (homogenous) database replication and group

communication primitives in order to satisfy both fault-tolerance and performance requirements [3].

Client

DBMS 1

DBMS 2

Middleware

nth SQL n+1th SQL n+2th SQL …

1

2

3

4 Client

DBMS 1

DBMS 2

Middleware

nth SQL n+1th SQL n+2th SQL …

1

2

3

4

Figure 2 Timing diagram of a client communicating with two, possibly diverse, database servers and

middleware running in optimistic regime. The meaning of the arrows is: 1 – the client sends an SQL

statement to the middleware, 2 – the middleware translates the request to the dialects of the servers

and sends the resulting SQL statements, or sequences of SQL statements, to the respective servers; 3

– the fastest response is received by the middleware; 4 - the middleware sends the response to the

client

We introduced a skip feature to the middleware to further improve performance. The feature enables the slower

server to omit the already executed (by faster server) read (SELECT) statements. The modifying SQL statements

(DELETE, INSERT and UPDATE) are executed on all servers. The skip feature helps slower server to advance

faster during a transaction execution and the overhead introduced by the replication decreases.

2. Experimental Setup

In the empirical study we used an implementation of an industry-standard benchmark for online transaction

processing, TPC-C [4], to evaluate potential for performance improvement. TPC-C defines five types of

transactions: New-Order, Payment, Order-Status, Delivery and Stock-Level and sets the probability of execution

of each. The minimum probability of execution for New-Order and Payment transactions is 43%, while it is 3%

for the other three types. The test harness consisted of three machines. The client machine executed the TPC-C

standard implemented in JAVA and the two server machines ran diverse open-source DBMSs, namely InterBase

110

6.0 and PostgreSQL 7.4.0 (abbreviated to IB and PG in the remainder of the document for brevity). The client

and the servers communicate through Java Database Connectivity (JDBC).

To get indications of how the FT-node compares with the single servers and non-diverse server combinations we

performed different types of experiments: 1IB, 1PG, 1IB1PG, 2IB and 2PG when only a single client is

employed. At the same time we wanted to produce more realistic load on servers but preserve data consistency.

Therefore we introduced additional clients (10 or 50) that execute read-only transactions. All clients

communicated to the same TPC-C database. We took measurements only for the TPC-C compliant client.

3. Experimental Results

We used the following three measures to compare different server configurations: mean response time per

transaction of each type, mean response time for all five transaction types and cumulative transaction time for all

five transaction types – experiment duration.

1+0 Clients

0

100

200

300

400

500

600

700

800

900

Delivery New-Order Order-

Status

Payment Stock-

Level

All 5

Transaction Type

R
e

s
p

o
n

s
e

T
im

e
(m

s
e

c
)

1IB

1PG

1IB1PG

2IB

2PG

Figure 3 Mean response times of single server combinations (IB, PG), diverse server pair (1IB1PG) or

homogenous server pairs (2IB, 2PG) for each transaction type and for all transactions together under a

single client load

Figure 3 depicts the response time when only one client communicates with different server configurations. We

see that PG is on average the best combination under this load, though transactions of type Delivery and Order-

Status are faster on IB. The situation changes when we look at the experiment with the increased load (see

Figure 4). Now the fastest combination on average is the diverse pair, albeit not for all transaction types. The

figure indicates that the diverse servers “complement” each other in the sense that when IB is slow to process

one type of transaction PG is fast (New-Order and Stock-Level) and vice versa (Payment, Order-Status and

Delivery). The similar results were obtained under the load with 50 additional clients.

The performance improvement of the diverse pair is more telling when we looked at the cumulative transaction

times for each server configuration. The experiment of 10,000 transactions under the ‘lightest’ load (0 additional

clients) is the fastest with 1PG. Under increased load, however, the experiment is fastest with the diverse pair,

111

1IB1PG. The diverse pair is 20% faster than the second best combination (1PG) when 10 additional clients are

deployed and more than 25% faster than the second best combination (2PG) when 50 additional clients are

deployed.

1+10 Clients

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Delivery New -Order Order-

Status

Payment Stock-Level All 5

Transaction Type

R
e
s
p
o
n
s
e

T
im

e
(m

s
e
c
)

1IB

1PG

1IB1PG

2IB

2PG

Figure 4 Mean response times of single server combinations (IB, PG), diverse server pair (1IB1PG) and

homogenous server pairs (2IB, 2PG) for each transaction type and for all transactions together under an

increased load with 10 additional clients

4. Conclusions and Future Work

The results presented substantial performance gain when diverse redundancy is used. Although a synthetic load

(TPC-C) was used, the same should be true for a real load, especially in a more read-intensive environment. To

evaluate performance of a read-intensive application another type of benchmark might be used, such as TPC-H.

The ongoing research includes implementation of an algorithm that ensures data consistency among replicated

databases. A promising direction for future development is to implement a configurable middleware, deployable

on diverse DBMSs, which will allow the clients to request quality of service in line with their specific

requirements for performance and dependability.

5. Bibliography

1. Gashi, I., P. Popov, and L. Strigini, Fault Diversity among Off-the-shelf SQL Database Servers, in

International Conference on Dependable Systems and Networks (DSN'04), 2004, Florence, Italy, IEEE

Computer Society Press, p. 389-398.

2. Bernstain, A., V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database

Systems. 1987, Reading, Mass.: Addison-Wesley.

112

3. Patino-Martinez, M., et al. Scalable Replication in Database Clusters. in International Conference on

Distributed Computing, DISC'00. 2000: Springer.

4. TPC, TPC Benchmark C, Standard Specification, Version 5.0. 2002, Transaction Processing

Performance Consortium.

113

114

Session on Mobile Systems

Chair: Ludovic Courtès, LAAS-CNRS, France

115

116

Storage Mechanisms for Collaborative Backup of Mobile

Devices

[Extended Abstract]

Ludovic Courtès ludovic.courtes@laas.fr

LAAS-CNRS

7 avenue du Colonel Roche

31077 Toulouse CEDEX 4

France

Introduction

Mobile devices are increasingly relied on but are used in contexts that put them at risk of physical damage, loss
or theft. Yet, due to physical constraints and usage patterns, fault tolerance mechanisms are rarely available for

such devices. We consider that this gap can be filled by exploiting spontaneous interactions to implement a
collaborative backup service. The targeted mobile devices (PDAs, "smart phones", laptops) typically have short-

range wireless communication capabilities: IEEE 802.11, Bluetooth, ZigBee. We also assume that those devices
also have intermittent Internet access.

The service we envision, which we call MoSAIC1, aims at providing mobile devices with mechanisms to tolerate
hardware or software faults, notably permanent faults such as theft, loss, or physical damage. In order to tolerate

permanent faults, our service must provide mechanisms to store the user's data on alternate storage devices using
the available communication means.

Considering that wireless-capable mobile devices are becoming ubiquitous, we believe that a collaborative
backup service could leverage the resources available in a device's neighborhood. Devices are free to participate
in the service. They can benefit from it by storing data on other devices. Conversely, they are expected

contribute to it, by dedicating some storage resources, as well as energy.

1 Mobile System Availability, Integrity and Confidentiality, http://www.laas.fr/mosaic/. MoSAIC is partly
financed by the French national program for Security and Informatics (ACI S&I). Our partners are IRISA
(Rennes) and Eurécom (Sophia-Antipolis).

117

This approach is similar to that taken by the commonly used wired peer-to-peer services. It offers a cheap
alternative to the costly infrastructure-based paradigms (e.g., UMTS, GPRS), both financially and in terms of
energy requirements. Additionally, it may operate in circumstances under which infrastructure access is not

available, potentially improving the backup service continuousness. On the other hand, the outcome of using this
service will be highly dependent on the frequency of participant encounters.

The next section presents MoSAIC's goals, notably in terms of dependability. New issues raised by this form of
service are also highlighted. Section 3 presents our work on the design of storage mechanisms for collaborative

backup based on the requirements imposed by the mobile environment. Finally, Section 4 summarizes our
findings and sketches future research tracks.

1. Goals and Issues

In this section, we describe the issues that we are trying to solve with this backup service in terms of
dependability. Then we describe the functionalities of the service. Finally, we detail new challenges that need to

be addressed in this cooperative approach.

2.1. Fault Tolerance for Mobile Devices

In the contexts they are used, mobile devices are subject to permanent faults (e.g., loss, damage, theft), as well as
transient faults (e.g., accidental erasure of data, transient software fault). These faults can lead to the loss of data

stored on the device. Yet, those devices are increasingly used to produce or capture new data in situations where
only infrequent backups are feasible. The development of a collaborative backup service is motivated by the

need to tolerate these faults.

The primary goal of our service is to improve the availability of the data stored on mobile devices. Each device
should be able to store part of its data on neighboring mobile devices in an opportunistic fashion, using the

available short-range wireless communication means. Here the device fulfills the role of data owner, taking
advantage of the backup service. Conversely, each participating device must dedicate some of its resources to the

service, notably storage, so that others can benefit from the service as well the device acts as a contributor.

We assume that as soon as a contributor gains access to the Internet, it can take advantage of it to transmit the
collected data to their data owner. Data owners are then able to restore their data if need be. In practice,

transferring data via Internet can be realized in a number of ways: using e-mail, a central FTP server, or some
sort of a peer-to-peer durable data store, for instance. However, our work is not concerned with this part of the

service. Instead, we focus on the design of the backup service in the mostly-disconnected case.

Our approach is somewhat similar to that of the widely used peer-to-peer file sharing [1] and backup systems [5]

on the Internet. However, the mobile environment raises novel issues.

118

2.2. Challenges

We assume that participants in the backup service have no a priori trust relationships. Therefore, the possibility
of malicious participating devices, trying to harm individual users or the service as a whole, must be taken into

account.

Obviously, a malicious contributor storing data on behalf of some user could try to break the data confidentiality.
Contributors could as well try to modify the data stored. Storage mechanisms used in the backup service must

address this, as will be discussed in Section 3.

A number of denial of service (DoS) attacks can be envisioned. A straightforward DoS attack is data retention: a
contributor either refuses to send data back to their owner when requested or simply claims to store them without

actually doing so. DoS attacks targeting the system as a whole include flooding (i.e., purposefully exhausting
storage resources) and selfishness (i.e., using the service while refusing to contribute). These are well-known

attacks in Internet-based peer-to-peer systems [1,5,6] which are only partly addressed in the framework of ad hoc
routing in mobile networks [3]. One interesting difference in defending against DoS attacks in packet routing

compared to cooperative backup is that, in the former case, observation of whether the service is delivered is
almost instantaneous while, in the latter, observation needs to be performed in the longer-run. Addressing these

issues is a challenge.

Other challenges that need to be solved include the design of an appropriate storage layer which we will discuss

in the next section.

2. Storage Mechanisms

In this section we focus on issues raised by the design of appropriate storage mechanisms for the backup service.

First, we identify issues raised by the mobile environment and the resulting constraints imposed on the storage
mechanisms. Then we present solutions drawn from the literature that are suitable to our context.

3.1. Requirements

The mobile environment raises several specific issues. First, resources on mobile devices (energy, storage space,

CPU power) are scarce. Thus, the envisioned storage mechanisms need to be efficient.

In particular, to limit the impact of running the backup service on energy consumption, care must be taken to use
wireless communication as little as possible given that it drains an important part of a mobile device's energy

[14]. Consequently, the amount of data to transfer in order to realize backups needs to be kept as low as possible.
Logically, this goal is compatible with that of reducing the amount of data that needs to be stored.

Encounters with participating devices are unpredictable and potentially short-lived. Thus, users cannot expect to
be able to transfer large amounts of data. At the storage layer, this leads to the obligation to fragment data.
Inevitably, data fragments will be disseminated among several contributors. However, the global data store

consisting of all the contributors' local stores must be kept consistent, in the sense of the ACID properties of a
transactional database.

119

Also, ciphering and error detection techniques (both for accidental and malicious errors) must be integrated to
guarantee the confidentiality and integrity of the data backed up. To maximize the chances that a malicious data
modification is detected, cryptographic hashes (such as the SHA family of algorithms, Whirlpool, etc.) need to

be used, rather than codes primarily design to detect accidental errors such as CRCs.

Finally, given the uncertainty yielded by the lack of trust among participants and the very loosely connected

scheme, backups themselves need to be replicated. How replicates should be encoded and how they should be
disseminated in order to get the best tradeoff between storage efficiency and data availability must be

determined.

3.2. Design Options

The storage-related concerns we described above lie at the crossroads of different research domains, namely:
distributed peer-to-peer backup [5,9], peer-to-peer file sharing [7], archival [12], and revision control [10,13]. Of

course, each of these domains has its own primary criteria but all of them tend to share similar techniques. File
sharing, for instance, uses data fragmentation to ease data dissemination and replication across the network. The

other domains insist on data compression, notably inter-version compression, in order to optimize storage usage.

Study of the literature in these areas has allowed us to identify algorithms and techniques valuable in our
context. These include fragmentation algorithms, data compression techniques, fragment naming schemes, and

maintenance of suitable meta-data describing how an input stream may be recovered from fragments.

We implemented some of these algorithms and evaluated them in different configurations. Our main criteria
were storage efficiency and computational cost. We performed this evaluation using various classes of data types

that we considered representative of what may be stored on typical mobile devices. The results are available in
[4].

As mentioned earlier, backup replication must be done as efficiently as possible. Commonly, erasure codes [16]
have been used as a means to optimize storage efficiency for a desired level of data redundancy. Roughly,

erasure codes produce n distinct symbols from a k -symbol input, with n > k ; any k +e symbols out of the n
output symbols suffice to recover the original data (is a non-negative integer that depends on the particular code

chosen). Therefore, n � k +e() erasures can be tolerated, while the effective storage usage is
k +e

n
. A family of

erasure codes, namely rateless codes, can potentially produce an infinity of output symbols while guaranteeing

(probabilistically) that still only k +e output symbols suffice [11].

However, an issue with erasure codes is that whether or not they improve overall data availability is highly

dependent on the availability of each component storing an output symbol. In a RAID environment where the
availability of individual drives is relatively high, erasure codes are beneficial. However, in a loosely connected

scenario, such as a peer-to-peer file sharing system, where peers are only available sporadically at best, erasure
codes can instead hinder data availability [2,8,15]. Therefore, we need to assess the suitability of erasure codes

for our application.

Furthermore, data dissemination algorithms need to be evaluated. Indeed, several data fragment dissemination
policies can be imagined. In order to cope with the uncertainty of contributor encounters, users may decide to

transfer as much data as possible to each contributor encountered. On the other hand, users privileging

120

confidentiality over availability could decide to never give all the constituent fragments of a file to a single

contributor.

We are currently in the process of analyzing these tradeoffs in dissemination and erasure coding using stochastic

models. This should allow us to better understand their impact on data availability.

4. Conclusion

We have presented issues relevant to the design of a collaborative backup service for mobile devices, including

specific challenges that need to be tackled. In particular, we showed how the constraints imposed by a dynamic
mobile environment map to the storage layer of such a service.

Our current work deals with the analytical evaluation of the data availability offered by such a backup service.
Our goal is to evaluate the data availability as a function of the rates of participant encounters, Internet access,
device failure, and time. This evaluation would allow the assessment of different data dissemination policies.

Useful modeling tools to achieve this include Markov chains and generalized stochastic Petri nets.

References

[1] K. BENNETT, C. GROTHOFF, T. HOROZOV, I. PATRASCU. Efficient Sharing of Encrypted Data.
Proc. of the 7th Australasian Conference on Information Security and Privacy (ACISP 2002), (2384),
pages 107120, 2002.

[2] R. BHAGWAN, K. TATI, Y-C. CHENG, S. SAVAGE, G. M. VOELKER. Total Recall: System Support
for Automated Availability Management. Proc. of the ACM/USENIX Symp. on Networked Systems Design

and Implementation, 2004.

[3] L. BUTTYÁN, J-P. HUBAUX. Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks.
ACM/Kluwer Mobile Networks and Applications, 8(5), October 2003.

[4] L. COURTÈS, M-O. KILLIJIAN, D. POWELL. Storage Tradeoffs in a Collaborative Backup Service for
Mobile Devices. LAAS Report #05673, LAAS-CNRS, December 2005.

[5] L. P. COX, B. D. NOBLE. Pastiche: Making Backup Cheap and Easy. Fifth USENIX OSDI, pages 285-
298, 2002.

[6] S. ELNIKETY, M. LILLIBRIDGE, M. BURROWS. Peer-to-peer Cooperative Backup System. The
USENIX FAST, 2002.

[7] D. KÜGLER. An Analysis of GNUnet and the Implications for Anonymous, Censorship-Resistant
Networks. Proc. of the Conference on Privacy Enhancing Technologies, pages 161176, 2003.

[8] W. K. LIN, D. M. CHIU, Y. B. LEE. Erasure Code Replication Revisited. Proc. of the Fourth P2P, pages
9097, 2004.

121

[9] B. T. LOO, A. LAMARCA, G. BORRIELLO. Peer-To-Peer Backup for Personal Area Networks. IRS-
TR-02-015, UC Berkeley; Intel Seattle Research (USA), May 2003.

[10] T. LORD. The GNU Arch Distributed Revision Control System. 2005, http://www.gnu.org/software/gnu-

arch/.

[11] M. MITZENMACHER. Digital Fountains: A Survey and Look Forward. Proc. of the IEEE Information

Theory Workshop, pages 271276, 2004.

[12] S. QUINLAN, S. DORWARD. Venti: A New Approach to Archival Storage. Proc. of the First USENIX

FAST, pages 89101, 2002.

[13] D. S. SANTRY, M. J. FEELEY, N. C. HUTCHINSON, A. C. VEITCH, R. W. CARTON, J. OFIR.

Deciding when to forget in the Elephant file system. Proc. of the 17th ACM SOSP, pages 110123, 1999.

[14] M. STEMM, P. GAUTHIER, D. HARADA, R. H. KATZ. Reducing Power Consumption of Network
Interfaces in Hand-Held Devices. IEEE Transactions on Communications, E80-B(8), August 1997, pages

11251131.

[15] A. VERNOIS, G. UTARD. Data Durability in Peer to Peer Storage Systems. Proc. of the 4th Workshop

on Global and Peer to Peer Computing, pages 9097, 2004.

[16] L. XU. Hydra: A Platform for Survivable and Secure Data Storage Systems. Proc. of the ACM Workshop

on Storage Security and Survivability, pages 108114, 2005.

122

Towards Error Recovery in Multi-Agent Systems

Alexei Iliasov

Alexei.Iliasov@newcastle.ac.uk

Introduction

The mobile agent paradigm is an attractive approach to developing large-scale, distributed applications. Its

flexibility and scalability makes it the technology of choice for highly dynamic and open environments. It also

benefits from the advances in wireless networks and wearable computing. Developers, however, still face a

number of challenges designing and implementing large agent systems. One of them is the lack of an effective

application-level recovery mechanism. This paper summarises these challenges and presents a criticism of an

existing exception handling based recovery mechanism and the plans for its adaptation and integration with thr

formal agent development methodology.

1. Challenges to Providing Error Recovery in Agent Systems

1.1. Decentralisation and homogeneity

In classical distributed systems a program is designed to be executed concurrently over a number of computing

nodes for the benefits of improved performance and better use of resource. Multi-agent systems are composed of

a number of independent computing nodes. Concurrency and distribution come more as necessity rather than a

design decision. The key distinction is that components of a distributed systems are orchestrated, explicitly, by a

dedicated entity, or implicitly, through an implemented algorithm, in order to solve a common task while agents

collaborate to achieve their individual goals. The common approach to error recovery in distributed systems is a

hierarchical organisation of processes where recovery is attempted at different levels and exceptions are

propagated across the levels. No such organisation is possible for agent systems. Agent are not linked by any

relations and have the same privileges, rights and capabilities. Since each agent has only a partial knowledge of a

global system state and acquires knowledge about other agent states through communication, collaboration

between agents is the only way to jointly recover from an error.

1.2. Weak Communication Mechanisms

Agent systems commonly employ communication mechanisms which provide very weak, if any, delivery and

ordering guarantees. This is important from the implementation point as agent systems are often deployed on

wearable computing platforms with limited processing power and use unreliable wireless networks for

communication. One of the most successful approaches to tolerating connectivity disruptions is the use of

decoupled communication. Publisher/Subscriber, Linda and message queues are the most prominent

representatives of asynchronous communication languages. Publisher/Subscriber provides a name-space

decoupled communication where event producers do not have to know names or number of consumers.

Communication in Linda is both time and name-space decoupled. Linda tuples are anonymously deposited in a

123

tuple space from where they can be anonymously retrieved later. Message queue is an example of a time

decoupled mechanism. Message producers and consumer have to know the name of a message queue but the do

not have to write and read at the same time. Neither of these mechanisms provides a delivery notification or any

form of delivery guarantee. This makes it hard to tell between a crash of an agent and a delay in a message

delivery. It can be dangerous to assume an agent failure solely on the basis of a timeout. On the other hand,

extensive use of timeouts can be highly impractical. Thus a recovery mechanism for should not attempt to make

a distinction between network failures and agent crashes unless there is a support for this from a communication

mechanism.

1.3. Autonomy

During its live an agent has to communicate with a large number of other agents, developed in decentralised

manner by independent developers. This is very different from the situation in classical distributed system where

all the system components are part of a closed system and thus fully trusted. Each agent participating in a multi-

agent application tries to achieve its own goal. Agent goals, in a general case, may be conflicting. For example,

the goal of a seller agent is to sell at the highest possible price while a buyer must buy at the lowest price. For a

recovery mechanism this means that no single agent should be given an advantage which may affect outcome of

a multi-agent application. Any scenarios where an agent controls or prescribes a recovery process for another

agent must be avoided.

1.4. Anonymity

Most agent systems employ anonymous communication where agents do not have to disclose their names to

other agents. This has a number of benefits: agents do not have to learn names prior to communication, there is

no need to create fresh names and ensure naming consistency in presence of migration and it is easy to

implement group communication. Anonymity is also an important security feature - no one can sense an agent

presence until it producers a message or an event. It also makes harder to tell which messages are produced by

which agent. For a recovery mechanism, anonymity means inability to explicitly address agents which must be

involved into a recovery. It may be impossible event to discover the number of agents that must be recovered.

Though it may be rather straightforward to implement names exchange, the impact on agent security and

problems of names consistency usually outweights the benefits of directed messaging. Thus, a recovery

mechanism preferably should not rely on a knowledge about agent names and must be scalable in respect to a

number of agents involved into a recovery.

1.5. Message Context

In sequential systems recovery actions are attached to certain regions, objects or classes which define a context

for a recovery procedure. There is no obvious counterpart for these structuring units in asynchronously

communicating agents. Agent produces messages in a certain order, each being a result of some calculations.

When data sent along with a message cause an exception in an agent, the agent may want to notify the original

message producer, for example, by sending an exception. When the exception arrives to the message producer it

could happen that the agent has proceeded with other calculations and the context in which the message was

produced is destroyed. This cannot happen in the case of synchronous communication where a message producer

124

waits for a reaction of a consumer. The problem of a lost context is a major obstacle on the way to implementing

application-specific recovery. This is why many existing systems use only asynchronous recovery.

1.5. Message Semantics

In distributed systems developed in a centralised manner semantics of values passed between system

components is fixed at the time of the system design and implementation. In open agent system implementation

is decentralised and thus the message semantics must be defined at the stage of a multi-agent application design.

If agents can also send exceptions the list of exceptions and their semantics must be also defined at the level of

an abstract application model. For a recovery mechanism this means that each agent has to deal only with the

exceptions it was designed to recover from. New exceptions and new message types cannot appear dynamically

during an agent lifetime unless there is way to dynamically extend agent functionality.

2. Exception Propagation in CAMA

This sections presents analysis of an exception handling based error recovery mechanism implemented in the

CAMA framework [2, 4]. CAMA introduced a number of concepts which heavily influenced the design of the

recovery mechanism. The most prominent ones are scope and role [6]. Scope is a unit of communication

isolation. Messages produced in a scope are inaccessible outside of the scope. Agent role is the typing

mechanism which prevents communication of incompatible agents. Each scope supports a predefined set of roles

and only agents implementing one of these roles can participate in the scope. These rules are supported by the

agent development methodology based on the B method [5]. The mechanism has an experimental

implementation for the Lime mobile agents middleware and a more mature version for the CAMA framework.

The essence of the mechanism is propagation of exceptions among agents which allows agents to implement a

form of cooperative recovery. The recovery mechanism is closely integrated with the CAMA scoping mechanism

which primary role in recovery is error confinement. When a failure is detected, the isolation provided by a

scope guarantees that the agents possibly affected by the failure are only those participating in the current scope.

A scope is also a basic structuring unit for a recovery in a multi-agent application. A scope is recovered when all

the scope participants recover from a failure. The nesting of scopes introduces a nested hierarchy of recovery

units. The mechanism analysis is based on the discussion of how the mechanism addresses each of the

challenges presented above. The detailed discussion of the mechanism can be found in [7].

Decentralisation and homogeneity. The mechanism relies on the middleware to control exception propagation

among agents. The control is done on the basis of a set of rules jointly produced by interested agents. The

problem of ensuring consistency of this rules is can be an obstacle for a decentralised implementation.

Weak Communication Mechanisms. Exceptions are introduced as new type of messages. Implementation-wise

this does not introduce dramatic changes to the communication layer however it requires priority of exceptions

over normal messages.

Autonomy. Though agents recover cooperatively they do not give up their autonomy during recovery. An agent

is never forced to expose its state or to follow commands of another agent.

Anonymity. This is one of the strong sides of the mechanism. An agent name is never disclosed to other agents

during a recovery.

Message Context. The mechanism attempts to address the problem of exception context by configuring virtual

125

regions of recovery. Before leaving a region an agent ensures there are no pending exception associated with this

region. When the region is closed all the incoming exceptions associated with it are mapped into a predefined

exception. In addition, there are primitives to poll for pending exceptions and wait for exception to appear. They

allow programmers to implement their custom recovery strategies, such as asynchronous recovery. Message

Semantics. The mechanism itself does not address this problem. Instead there is a formal top-down development

procedure based on the B Method. Development starts with an abstract model of a multi-agent application. More

details are added in a step-wise manner using the refinement technique. The final result is a decomposed

specification of a scope along with independent specifications of agent roles. It is possible to formally

demonstrate their interoperability for roles constructed in such manner. Since all the constant values and

message types were originally defined in an abstract specification they have exactly the same semantics in all the

individual roles.

3. Future Plans

The exception propagation mechanism discussed above has a number of weak points. It does not deal very well

with decentralisation and message context. Being a rather complex mechanism it is hard to formalise and

incorporate into the formal top-down development methodology. The attempt to cover many possible recovery

scenarios by providing low-level primitives makes scope-level recovery implementation a hard and an error-

prone process. All of these calls for a different style of recovery based on the same principles. The mechanism

must be simple enough to be formalised along with agent roles and flexible enough to cover the most important

scenarios of application level recovery. The methodology is based on the reactive architecture [3] which fits well

the formal development approach of action systems. It also seems to be a reasonable way for introducing

recovery actions so that a role specification is a set of reactions implementing normal behaviour and reactions

for recovery actions. The open question though is how to enter and leave abnormal code. This problem stems

from the fact that internal agent architecture if far more complex than those of a sequential program or a standard

concurrent program. Firstly, exceptions may appear both internally and externally. Secondly, the reactive

architecture permits an unlimited number of of interleaving activities which are more or less unaware of each

other.

4. References

[1] Rigorous Open Development Environment for Complex Systems. IST FP6 STREP project, online at

http://rodin.cs.ncl.ac.uk/

[2] A. B.Arief and A.Romanovsky. On Using the CAMA Framework for Developing Open Mobile Fault Tolerant Agent

Systems. University of Newcastle. 2006.

[3] N. Busi, A. I. T. Rowstron, and G. Zavattaro. State- and event-based reactive programming in shared dataspaces. In

COORDINATION '02: Proceedings of the 5th International Conference on Coordination Models and Languages, pages

111124, London, UK, 2002. Springer-Verlag.

[4] A. Iliasov. Implementation of Cama Middleware. Available online at http://sourceforge.net/projects/cama [Last

accessed: 1 June 2006].

[5] A. Iliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna. Towards Formal Development of Mobile Location-based

Systems. Presented at REFT 2005 Workshop on Rigorous Engineering of Fault-Tolerant Systems, Newcastle Upon Tyne,

UK (http://rodin.cs.ncl.ac.uk/events.htm), June 2005.

126

[6] A. Iliasov and A. Romanovsky. CAMA: Structured Coordination Space and Exception Propagation Mechanism for

Mobile Agents. Presented at ECOOP 2005 Workshop on Exception Handling in Object Oriented Systems: Developing

Systems that Handle Exceptions. July 25, 2005. Glasgow, UK, 2005.

[7] A. Iliasov and A. Romanovsky. Exception Handling in Coordination-based Mobile Environments. In Proceedings of the

29th Annual International Computer Software and Applications Conference (COMPSAC 2005), pages 341350. IEEE

Computer Society Press, 2005.

127

Increasing Data Resilience of Mobile Devices with a

Collaborative Backup Service

Damien Martin-Guillerez

IRISA/ENS-Cachan

Campus de Beaulieu, 35 042 Rennes Cedex, FRANCE

dmartin@irisa.fr

1. Introduction

The production of sensible data on mobile devices, such as PDAs or mobile phones, has increased with the use

of such devices. The loss of those data can have painful consequences for the user (e.g. loss of phone numbers or

meeting notes).

To reduce data loss, many devices have a synchronization mechanism. The main issue in synchronization is the

necessary proximity of the user and his computer and thus, there is a time period during which device failure

means irreversible data loss. For example, if you take a note on your PDA during a meeting and this PDA gets

lost on your way home then the note is definitely lost. However, more and more mobile devices come with

wireless connectivity like IEEE 802.11. Thus, using neighbor devices to save data right after its production can

decrease data loss. Data can be restored either from a global-scale network like the Internet or directly from the

backup device.

We aim at creating a transparent collaborative backup service for mobile devices [5]. Such a service needs to

meet specific requirements outlined in section 2. Then, we analyze several specific issues of mobile device data

and replication in section 3. Afterwards, we present a way to order replicas in that system in section 4. After

presenting existing systems in section 5, we outline works that are still pending and conclude in section 6.

2. Design overview

Our main aim is to design a transparent backup system that can handle high mobility. Thus, it needs to handle

two scenarios: (i) when connected to a global network like the Internet, the system must use the opportunity to

save data on a resilient server and (ii) when disconnected from the global network, it must use neighbor

terminals to backup selected data.

Figure 1: Conflict during a restoration. Figure 2: Graphical proof of equation (1).

128

Depending on data production (e.g. production rate, data importance), the system should adapt the level of

replication. Moreover, the system needs to be protected against egoistic participants that backup but do not

provide resources to others. Of course, we want the system to be as transparent for the user as possible. That

means that very few actions are required from the user during the backup or the restore and that neither prior

trust relationship with other peers nor extra hardware is required.

We consider only following backup scenarios: a client terminal can either backup its data to another terminal or

to an Internet server. Later, the backup peer can save the data on the Internet server. If a failure occurs, the client

terminal can restore the data from the peer or from the server. We do not consider propagating backup through

peers because:

• Propagating backups costs energy and others resources that will not be available for further backups.

• Only a full replica can be issued in such situations, contrary to considered backup dispersion schemes.

• Only the client terminal can know when it's necessary to issue a replication. A replication issued by a

backup terminal has a good chance to be useless.

3. Data Issues

Mobile device data. We will now look at data produced on classical mobile devices and at their attributes to

outline related issues. The size mainly depends on data type (from less than 200 bytes for SMS to hundred of

megabytes for movies). The second attribute is data importance, high for notes taken during a meeting to very

low for holiday pictures for instance. Dependencies are also important: a SMS may be useless without all

preceding SMS in a discussion thread. When a data item depends on preceding data, we call it a temporal

dependency. On the contrary, when a data item is interdepent with others data, we call it a spacial dependency.

So, mobile device data are categorized by size, dependencies and importance.

The size affects the backup system in means of (i) resisting to mobility or network problems during a

transmission and (ii) avoiding monopolizing one terminal memory. Dependencies affect backup integrity and

thus the system needs some version tracking. Finally, we assign a priority for each data item relatively to its

importance and try to save data items with highest priority first.

Dispersion of replicas. File fragmentation is imposed by potentially high sized data. Moreover, the risk of a

terminal not correctly restoring a replica creates a need for a flexible replication scheme. Courtes et al. [4] have

already defined the redundancy and compression methods we use. We consider that all data items with spatial

dependencies are agglomerated into one (the priority of the new item is the highest of the agglomerated items).

Then, we consider the (n, k) replication scheme that fragments the data item into n pieces where only k are

required for reconstruction. We also consider delta-compression which saves only the changes between two

versions of the same file. Replication when delta-compressing is made on generated delta.

So, we consider that every data item to save follow this format: n fragments and only k needed to reconstruct the

data item, possible temporal dependencies (the priority of old data should be increased if it is lower than the

priority of the new data).

Version tracking. Given those propagation and dissemination schemes, some issues can appear regarding

arrival of new version of a data item to backup. First, the old version of a data should be kept until all

129

dependencies of the new version have been backed-up to the resilient server. Moreover, conflicts may appear in

our system. When you backup the data of a mobile device on a fixed station, no conflict appears since all new

versions of a data item are created on this device. But, with our propagation scheme, a conflict may appear (cf.

figure 1) when a data item is backed-up on another mobile device and an old version of this data item is located

on the Internet server. If a failure occurs in this case, the client may restore the old version from the server and

work on it, generating a conflict with the version backed-up on the mobile device. In such a situation, our system

must use conflict resolution mechanisms like in Bayou [9].

4. Maximizing backup reliability

We will start studying the (n, k) replication scheme. Let
i

P be the probability of getting back the replica i and

l

i
P the probability of being able to get back l replicas between the first i ones. Then we have (cf. figure 2):

1

11)1(�

�� �+�+=
l

ii

l

ii

l

i
PPPPP

So, when backing-up an additional replica, we can estimate the impact on the probability of getting back the

entire data item. That is right, of course, only if each replica is saved on a different terminal. We can handle the

case of two replicas being backed-up on the same terminal by assuming that they have the same probability
i

P .

Thus, if we save m replicas onto the same terminal at the same time, we have:
ml

ii

l

ii

l

mi

�

+�++ �+��= PPPPP 111)1(

We assume that a further save of a replica on an already used terminal is an independent event. Finally we must

take into account the temporal dependencies. The probability of restoring correctly a new data item that depends

on old ones is the probability of restoring the new data item multiplied by the probability of restoring the old

data.

We said in section 3 that each data item is associated with a priority given as a desired backup resilience (e.g. a

probability). A prior mechanism should have established this priority. Hence we can order data items to be

backed-up using a queue ordered by the priority minus the computed probability of successful backup.

Thus, we get a general algorithm to order data packets to save. First, we try to save while the peer is reachable.

The first data item that may be saved on this peer is pulled off the queue. We try to save the next packet of this

item and recompute the probability of a successful backup. If the probability is too low, the data item is inserted

back into the queue. We use (1) and (2) to recompute the probability.

5. Related Works

Usually, data resilience is increased using hardware replication. In network file systems, replication of data uses

several data servers [8]. Peer-to-peer file systems have used replication to increase data availability [3] and have

paved the way for collaborative backups [1].

In a mobile context, Roam [7] uses peers to replicate data for high availability but can hardly handle high

mobility due to the clusterization of the peers. Data replication between clusters is needed when a peer switches

clusters. In fact, Roam is not designed for backup recovery but for high availability and data sharing. Moreover,

Roam does not exploit opportunistic replication on random mobile peer. AdHocFS [2], another file system

focused on high availability and data sharing by transposing peer-to-peer file systems' paradigms to ad hoc

130

networks, does not give support for high mobility. FlashBack [6], a backup system for Personal Area Network

(PAN), can efficiently handle data loss. FlashBack is designed for people that wear several wireless mobile

devices. Thus, FlashBack suffers from the same limitations as AdHocFS and Roam.

6. Conclusion

We have presented a general design for a backup system that can handle high mobility and that do not rely on

pre-established relationships. Issues regarding incentives, confidentiality, high mobility and resource

management are still to be resolved.

Indeed, several requirements have been outlined in section 2: the system must be transparent, should not rely on

prior relationships nor on specific hardware. The system must automatically assign the priority to the data,

should use incentives and confidentiality techniques. The network layer should use classical wireless interface

without interference with their classical uses.

A main pending issue is the probability estimation of one packet to be correctly restored (
i

P). The main

parameter is the reliability of the device itself eventually given by incentives. Other parameters can be battery

lifetime, terminal context and memory availability. Resource management implies deletion of replicas to free

memory on backup terminals. We need to know which replicas to delete and the impact on the system efficiency.

Our future works will concentrate on those issues related to resource management.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A Secure Peer-to-peer Backup System. Technical

Report MIT-LCS-TM-632, MIT Laboratory for Computer Science, Dec. 2001.

[2] M. Boulkenafed and V. Issarny. AdHocFS: Sharing Files in WLANS. In The Second IEEE International

Symposium on Network Computing and Applications (NCA'03), Apr. 2003.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous Information

Storage and Retrieval System. In The Workshop on Design Issues in Anonymity and Unobservability,

pages 4666, July 2000.

[4] L. Courtès, M.-O. Killijian, and D. Powell. Storage Tradeoffs in a Collaborative Backup Service for

Mobile Devices. To appear, 2006.

[5] M.-O. Kilijian, D. Powell, M. Banâtre, P. Couderc, and Y. Roudier. Collaborative Backup for Dependable

Mobile Applications. In The 2nd International Workshop on Middleware for Pervasive and Ad-Hoc

Computing (Middleware). ACM, Oct. 2004.

[6] B. T. Loo, A. LaMarca, and G. Borriello. Peer-To-Peer Backup for Personnal Area Networks. Technical

Report IRS-TR-02-015, Intel Research Seattle - University of California at Berkeley, May 2003.

[7] D. Ratner, P. Reiher, and G. J. Pope1. Roam: A Scalable Replication System for Mobile Computing. In

The Workshop on Mobile Databases and Distributed Systems (MDDS), pages 96104, Sept. 1999.

[8] M. Satyanarayanan. Scalable, Secure and Highly Available Distributed File Access. IEEE Computer,

23(5):921, May 1990.

[9] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing

Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In The 15th ACM

Symposium on Operating Systems Principles (SOSP'95), Dec. 1995.

131

Random Walk for Service Discovery in Mobile Ad hoc Networks

Adnan Noor MIAN
Dipartimento di Informatica e Sistemistica

University of Rome, “La Sapienza”

Via Salaria 113 Roma, Italy

adnan@dis.uniroma1.it

1. Introduction

Service discovery in mobile ad hoc networks (MANETs) is a challenging issue. As nodes in a MANET

offer spontaneous and variable connectivity, the proximity of a given service as well as the number of services vary

unpredictably with time. Traditional directory based architectural solutions can hardly cope with such a dynamic

environment while a directory-less approach has to resort to network-wide searches. Moreover deploying a service

discovery protocol on top of a routing protocol is another source of inefficiency, since similar problems have to be

addressed twice by both protocols. In this work we are trying to tackle the problem of service discovery by

leveraging on the random walk based search. Here from service discovery we mean finding the location of a service.

2. Related Work

There has been a good amount of work in service discovery regarding the wired networks but the problem

has not been addressed very successfully in MANETs. In wired networks four types of architectures have emerged.

In the first type, directory-based architecture, some nodes with better computation and memory resources are

selected as service coordinators (SC). The service coordinators advertise themselves to other nodes. Service provider

nodes register with these SCs. Clients contact these SCs to get the location of service providers. Examples include

Jini [1], UDDI [11] and Salutation [12]. This approach is not suitable for MANETs where the topology of the

system keeps on changing and it is not easy to form service coordinator node. In the second type, which is the

directory-less architecture, there is no service coordinator. Clients contact service provider directly by flooding the

service query. This results in a high overhead produced due to flooding. This approach is also not suitable for

MANETs as flooding consumes lot of scarce bandwidth resource. Examples include SLP [3] and UPnP [2]. Third

type is the hybrid architecture in which servers may either register their services with SCs (if they are available) or

wait for the client service query. Client may send a service query to SCs (if they are available) or directly to service

providers using flooding. This architecture is also not suitable for MANETs for the reasons mentioned in the

previous two architectures. In the forth type of architecture, service discovery can be intergraded with the route

discovery as both exploit network-wide broadcasting. Such a cross-layer design principle can improve the

performance but there is still the need to resort to network wide searches [13].

Some of the important service discovery protocols proposed for MANETs are following. Kozat and

Tassiulas proposed a distributed service discovery architecture for MANETs that relies on a virtual backbone for

locating and registering available services within a dynamic network topology [4]. The architecture consists of two

independent parts: backbone management (BBM) phase and distributed service discovery (DSD). A similar

approach has more recently proposed by Sailhan and Issarny [5] for implementing a scalable directory service for

MANET. The architecture is based on homogenous and dynamic deployment of cooperating directories among the

network, arranged in a virtual network. Despite the goal of the architecture as achieving scalability, the paper

presents performance results only for a few nodes (90 nodes).

Konark [6] is designed specifically for the discovery and delivery of services in multi-hop ad hoc networks.

It supports both push and pull modes, with a cache in all devices and uses multicast to advertise and discover

services. The only analogy with our proposal is that every node maintains a service registry, where it stores

information about its own services and also about services that other nodes provide.

A field theoretical approach to service discovery has been proposed by Lender et al. [7]. A service is

modeled by a (positive) point charge, and service request packets are seen as (negative) test charges that are

attracted by the service instances. They map the physical model to a mobile ad hoc network in a way where each

132

network element calculates a potential value and routes service requests towards the neighbor with the highest

potential, hence towards a service instance. In our approach the estimated proximity could also be thought as the

potential of a field. However, our core forwarding protocol is random in nature.

The use of random walk as a mean of searching for an item is a well-established technique in unstructured

peer-to-peer (P2P) networks [8]. The topology of a mobile ad hoc network is however structurally different from

P2P networks and thus the suitability of random walks have to be studied carefully.

Finally, a technique similar to the one used to measure hints, has been originally proposed in the

Associativity Based Routing (ABR) routing scheme, where a counter is used to count the number of “associativity

ticks” between two nodes and use this information to select the most stable route [9].

Our approach is based on Random Walk for discovering or locating a service in mobile ad hoc network.

This is a probabilistic approach. It does not need to have any centralized repository. It takes advantage of the

mobility of the nodes and is also resilient to the topological changes. This work is explained in the next sections.

3. Exploiting Random Walk

Given a graph and a starting point, we select a neighbor of it at random and move to this neighbor. We then

select a neighbor of this point at random and move to it and so on. The random sequence of points selected this way

is a random walk on the graph. The theory of random walks on a graph has been explained in great detail in [10].

We are trying to exploit this theory for the purpose of service discovery in mobile ad hoc networks. In this approach

a client (node that is interested in a particular service) will approach the service randomly moving on the graph

formed by the MANET. The advantage of this approach is that there will be no flooding which consumes lot of

scarce bandwidth resource in MANET and also the problem of collision of packets can be avoided.

In pure random walk on the graph [10] the neighbor is selected randomly, but we shall try to bias the

selection process. In this regard there is an interesting result that we want to exploit. Let us consider a simple case of

N+1 nodes arranged in one-dimensional form, as shown in Figure 1.

Figure 1

Suppose a node i wants to search a service present in node s. For this purpose, to forward a query message

there are always two options available, that are either sending the query message towards the service provider node s

or sending the query message away from it. Let the probability p of forwarding the query to the node near to service

provider node s is 0.5. Then the probability q of selecting a node away from the node s is also 0.5. We can say that

the selection of node for forwarding the query packet is completely unbiased. In this case the mean hitting time is N
2

where the hitting time is the expected number of steps or hops in a random walk before a node s is visited for the

first time, starting from node I [10,14]. Let us take another case in which if each node selects a neighbor node

towards the node s with probability p=1, that is, the selection is biased. Now there are exactly N hops. Thus we see

that biasing the selection process decreases the number of hops of a query message to reach the required service.

For us this result is interesting in the sense that if in a service discovery protocol we can find some way to

bias the selection of next neighbor such that the probability is 0.5<p<1, we can then decrease the number of hops

considerably for the discovery of a service. The problem remains to find some metric that can be used to bias the

next hop selection for service query message.

It is clear that for next hop, the node that is nearest to the service provider and also in the wireless range of

the client should be selected. The most obvious method in determining the nearest node to the service provider is

using the Euclidean distance. We can then have a Euclidean metric for biasing the selection process. But this metric

requires Global Positioning System (GPS) to determine the relative distances of the nodes from the service provider.

GPS is not always possible.

133

We propose an alternative technique and a metric to bias the node selection process. Our technique is based

on finding the radial speed of different nodes with respect to the service provider. Bias is provided by a metric called

hint [15]. Hint his is calculated and stored by a node i for a particular service provider node s. It provides the

proximity of node i to node s at time t. In other words, it tells that the node i has some time ago remained in contact

with s. No hint will be available in case node i has never been in the vicinity of node s.

To calculate hint, node s sends an advertisement message after every �T secs containing the description of

the service. This advertisement message is picked up by a mobile neighbor node i, which then updates its service

table. The service table at node i, in addition to other information also records the duration of the last wireless link

established with s and time elapsed since the link with s was broken. The node i after every �T secs calculates hint

and while moving sends the hint to the newly encountered neighbors. The nodes that have low values of hints are

more probable to be near to the node s.

Figure 2

4. Algorithm for Random Walk based Service Discovery

Our Service Discovery Protocol based on biased random walk mainly consists of two phases. In the first

phase, moving nodes when pass near service provider nodes calculate hints, as explained in Figure 2, and store these

hints. In the second phase, when a client node searches for a service and sends a query message, a forwarding

protocol running on each node forwards the query message when it receives it. These two phases are explained

below.

Hint creation and distribution

1) A node s advertises a service S by sending an advertisement message containing the description of the

service after every �T secs.

2) The advertisement message is picked up by a neighbor node i, which then updates its service table. An

entry of the table is deleted when it becomes stale.

3) The service table at node i contains the following information:

i) description of the service S

ii) ID of the advertising node

iii) ID of the sending node

iv) duration of the last wireless link established with s

v) time elapsed since the link with s was broken

4) After every �T secs node i calculates hint and while moving sends the hint to the newly encountered

neighbors. The nodes, which have low values of hints, are more probable to be near to the service

provider node.

Forwarding Protocol

1) A node wishing to discover a service S generates a request message containing the description of S.

2) If hints are available then that node is selected for next hop, which provides the minimum value of

hint.

134

3) If hints are not available then the selection of the next hop node is at random.

In Figure 3, small values near the nodes are the hints. The query message starts from node s and following a

random selection (shown as thin red arrow) and biased selection (shown as thick blue arrow) eventually reaches the

node s.

Figure 3

5. Future Work

We are trying to setup a simulation that will simulate our protocol. We are studying the problem from analytical

point of view and trying to look for possible chances of utilizing the work done in the field of graph theory,

particularly random walks on graphs. Also we are trying to find out other metrics that can be used to bias the

selection process. We also plan to compare the message cost in our model with the flooding model. The model and

the algorithm presented here assume the mobility of nodes. It will not work if the nodes are stationary. We want to

study a model that caters for both a system with moving nodes and also stationary (or slow moving) nodes.

References

[1] Sun Microsystems. Jini network Technology. http://www.jini.org, 1999

[2] Microsoft Corporation. Universal Plug and Play (UPnP) forum. http://www.upnp.org., 1999

[3] PerkinsC., Veizades J. Day M. Guttman, E. Service location protocol, Version 2. RFC 2608, Internet

Engineering Task Force (IETF), June 1999

[4] L. Tassiulas and U.C. Kozart. Service discovery in mobile ad hoc networks: an overall perspective on

architectural choices and network layer support issues, 2004

[5] V. Issarny F. Sailhan. Scalable service discovery fro manet. In Proceeding of the 3
rd

IEEE Int’l Conf. On

Pervasive Computing and Communications (PerCom2005), Kauai Island, Hi, USA, 8-12 March 2005.

IEEE.

[6] V. Verma C. Lee S Helal, N Desai. Konark, a service discovery and delivery protocol for ad hoc networks.

In the proceedings of the third IEEE Conference on Wireless communication Network (WCNC), New

Orleans, USA, 2003, IEEE.

[7] Martin May Vincent Lenders and Bernhard Platter. Service discovery in mobile ad hoc networks: A field

theoretic approach. Elsevier Pervasive and Mobile Computing, 2005

[8] Amin Saberi Christos Gkantsidis, Miena Mihail. Random walks in peer-to-peer networks. In the

Proceedings of INFOCOM 2004, Hong Kong, March 7-11, 2004.IEEE

135

[9] C. K.G Toh. A novel distributed routing protocol to supported ad hoc mobile computing. In IEEE 15
th

Annual International Phoenix Conference on Computers and Communications(IPCCC), Phoenix, AZ,

USA, March 27-29, 1996, IEEE

[10] L. Lovasz, Random walks on graphs: a survey, In Combinatorics Paul Erdos in Eighty, Vol. 2, Budapest,

1993. J’anos Bolyai Mathematical Society

[11] OASIS Consortium The universal description, discovery and integration (UDDI). http://www.uddi.org.

[12] Salutation Consortium. Salutation architecture specification version 2.1. http://www.salutation.org, 1999.

[13] George C. Polyzos Christopher N. Ververidis. Routing layer support for service discovery in mobile ad hoc

networks. In Proceedings of third IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOMW’05), Washington, DC, USA, 2005. IEEE.

[14] Gefen Y. Goldhirsch II. Biased random walk on networks. Physical review, Feb. 1987, 35(2).

[15] R. Baldoni R. Beraldi, L. Querzoni. A hint-based probabilistic protocol for unicast communications in

manets. Elsevier Ad Hoc Networs, 2005.

136

Session on Distributed
Systems

Chair: Paulo Sousa, University of Lisbon,
Portugal

137

138

Quantitative Evaluation

of Distributed Algorithms

Lorenzo Falai - Università di Firenze

Introduction

The quantitative evaluation of performance and of dependability-related attributes is an important activity of

fault forecasting ([1]). Quantitative system assessment can be performed using several approaches, generally

classified into three categories: analytic, simulative and experimental. Each of these approaches shows different

peculiarities, which determine the suitableness of the method for the analysis of a specific system aspect. The

most appropriate method for quantitative assessment depends upon the complexity of the system, the

development stage of the system, the specific aspects to be studied, the attributes to be evaluated, the accuracy

required, and the resources available for the study.

The largeness and complexity of dependability critical systems, together with the necessity of continuous

verification and validation activities during all the design and development stages in order to promptly identify

deviations from the requirements and critical bottleneck points, call for a composite V&V (verification and

validation) framework, where the synergies and complementarities among several evaluation methods can be

fruitfully exploited. Comparison of results for a certain indicator obtained through the application of two

alternative methods allows cross-validation of both. Feeding a system model with parameter values derived

through experimental measurement is a central example of cross-fertilization among different methods.

A high proliferation of automatic tools supporting a variety of quantitative evaluation methods has been reached

till now, and research in this direction is always in progress. In recent years, special attention is being devoted to

the analysis of distributed protocols.

In this stream of methodologies and tools to contribute to the V&V of distributed algorithms, a framework has

been developed, called Neko, which consists of a simple communication platform that allows to both simulate a

distributed algorithm and execute it on a real network, using the same implementation for the algorithm ([2]).

However, Neko permits only to collect traces of execution; it does not include support to collect and manage

events so as to perform on-line quantitative evaluations, in parallel with the algorithm execution. We worked on

the NekoStat extension to Neko; using this extension it is possible to perform simple and powerful quantitative

analysis of distributed algorithms, using simulative and experimental approaches. Following the same

philosophy of Neko, NekoStat has the ability to perform quantitative evaluations adopting both the simulative

and experimental approaches. The main difference between these two kinds of analysis is that in simulations we

can make on-line evaluations, whereas in real experiments the quantitative evaluation is performed only at the

termination of the distributed system execution, after all the data have been collected.

139

1. The Neko Framework

Neko ([2]) is a simple but powerful framework that permits the definition and the analysis of distributed

algorithms, showing the attracting feature that the same Neko-based implementation of an algorithm can be used

for both simulations and experiments on a real network.

The architecture of Neko can be divided in three main components (see Figure 1): applications, NekoProcesses

and networks.

Figure 1: Typical architecture of a Neko-based distributed application

Applications are built following a hierarchical structure based on multiple levels (called Layers). Layers

communicate using two predefined primitives for message passing.

The Neko communication platform is a white box: the developer can use a network available on Neko or he/she

can define new network types. Different networks can be used in parallel, and this allows the exchange of

different types of message using different networks. Neko networks are the lowest level of the architecture of a

Neko application. As already mentioned, an implementation of a distributed algorithm can run on top of a real

network, as well as on a simulated network, without changing any line of code. In fact, two types of networks are

supported by Neko: real and simulated networks.

A Neko application can be configured through a configuration file, containing information to set up all the

involved processes. Then, bootstrapping a Neko application is different for a simulation and a distributed

execution. In real executions there is an asymmetry between different processes: there is a master process, that

coordinates the execution, and m-1 slave processes.

Although possessing the attractive features exposed so far, the Neko framework lacks any support to quantitative

assessments. Therefore, to permit assessment of quantitative properties - namely, dependability and performance

metrics - we devised, designed and constructed an extension to standard Neko framework.

140

2. The NekoStat Package

NekoStat extends the V&V analysis features of Neko in the direction of a statistical dynamic evaluation of a

system, both on simulated and real execution. In Figure 2 a high level view of the structure of a session of

analysis using the NekoStat extension is depicted.

Figure 2: High level view of typical session of analysis of a distributed system made with NekoStat

One of the basic ideas of Neko was to define a framework in which the developer can use the same

implementation of a distributed algorithm, both for simulations and real experiments. We wanted to retain this

appealing feature in the NekoStat design: the usage of the provided tools is similar both in simulations and in

real experiments.

Using NekoStat to obtain an assessment of relevant metrics of a distributed system is simple. First of all, it is

necessary to implement the distributed system/algorithm, using the tools available in the Neko framework (Java

language). Then, in order to apply the tools available in the NekoStat extension, the following simple

modifications have to be performed to the application code:

1. define the interesting events and introduce calls to the log(Event) method, of a special predefined logger

class (StatLogger) in the points of the source code where the event happens;

2. implement a StatHandler, a class containing the methods to manage the collected distributed events and

to transform them into quantities.

The NekoStat package is actually part of the standard Neko, from the release 0.9 of the tool ([3]).

3. Conclusions And Future Work

NekoStat, an extension to the already existing Neko framework for the analysis of distributed systems/protocols,

was here described. Neko, although powerful and easy to use, allows only collection of traces of execution, and

141

does not include any support to manage the gathered events to perform quantitative evaluations, in parallel with

the protocol execution. The NekoStat tool is described with details in [4]. An example of use of the NekoStat

tool is in the paper [5] where we describe an experimental evaluation of the quality of service of a large class of

failure detectors in a WAN environment.

While retaining the appealing features of Neko, NekoStat enriches Neko with mathematical supports to handle

the numerical quantities, as well as with analysis supports, to collect relevant distributed events and to analyze

them on-line. We are now working on devising additional extensions, both to Neko and to NekoStat, in order to

further improve the analysis of distributed systems. In particular, two directions are under investigation:

• to extend the framework to include, as Neko layers, portions of source code of distributed algorithms

written in languages different from Java (e.g., C and C++). Removing the restriction to use only algorithm

written in Java will allow the analysis of a much richer population of already existing distributed protocols

written in languages other than Java, without the necessity of any translation. Apart from easing the analysis

process, this feature is very attractive especially in those cases where the translation in Java is not

straightforward or possible at all (e.g., because Java does not contain support for some low-level functions). In

any case, avoiding the translation improves efficiency and is less error-prone;

• to increase the accuracy in the obtained results; in particular, we are trying to take into account the

possible sources of error in the distributed system metrics evaluation. One important point in this direction is the

implementation of methods, integrated in the framework, to control the actual level of accuracy of the temporal

measurements made using the tool.

References

[1] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of dependable and

secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 2004.

[2] P. Urbán, X. Défago, and A. Schiper. Neko: a single environment to simulate and prototype distributed

algorithms. In Proc. of the 15th Int’l Conf. on Information Networking (ICOIN-15), Beppu City, Japan, February

2001.

[3] P. Urbán. Neko 0.9 website.

http://lsrwww.epfl.ch/neko/.

[4] Lorenzo Falai, Andrea Bondavalli, and Felicita Di Giandomenico. Quantitative evaluation of distributed

algorithms using the neko framework: The nekostat extension. In LADC, pages 35–51, 2005.

[5] L. Falai and A. Bondavalli. Experimental evalutation of the QoS of failure detectors on Wide Area

Network. In Proceedings of the International Conference on Dependable Systems and Networks (DSN 2005),

Yokohama, June 2005.

142

From Fast to Lightweight Atomic Memory in Large-Scale

Dynamic Distributed Systems

Vincent Gramoli – IRISA, INRIA-Rennes, CNRS.

1. Introduction

Replicating a read/write object over a set of distant network locations leads to consistency problem. Assume that

an object is modified at some place. From this point on, changes must appear from any location: If a particular

client reads the value, then it must return the lastly written value of the object. This simple expression describes

the idea at the core of atomic consistency also known as linearizability [Lam86, HW90, Lyn96].

The simplest representation of quorums among a set of n elements is the majority sets. Quorums systems are

fundamental in distributed shared memory (DSM), because they represent the minimal set of locations where the

object must be replicated. That is, reading or writing the object consists simply in accessing a constant number

of quorums among the existing ones. The quorum system represents all nodes owning a copy of the object. In

the remaining we refer to n as its size. The quorum intersection property guarantees that at least one contacted

element can testify of the last value written when contacted through a read operation. Therefore quorums are at

the core of atomicity and minimizing quorum access time boils down to speed-up read/write operations.

Even though increasing quorum size can tolerate more failures in static systems, dynamic systems can not afford

such a solution. Indeed, in static systems where the amount of failures is upper bounded, the intersection

between quorums should contain enough elements to guarantee that at least one of it is correct. In dynamic

systems where the amount of failures is unbounded, consistency requires additional mechanisms. Among those

mechanisms are reconfiguration introducing new active quorums, adaptive quorum access, and probabilistic

quorum probing.

This paper discusses the tradeoff relying between operation time and message complexity induced by

consistency requirements.

The paper is divided as follows. Section 2 investigates approaches that cope with infinite amount of failures.

Section 3 presents solutions to the problem induced by large-scale systems with limited bandwidth capacity.

Finally Section 4 concludes the paper.

2. Facing Dynamism

Several existing papers focus on the emulation of shared memory in message passing systems, also known as

Distributed Shared Memory (DSM). For instance, Attiya et al. [ABD95] propose a robust single-writer multi-

reader (SWMR) shared memory algorithm. This algorithm specifies a two-phase read operation and a single

143

phase write operation, each phase consisting in an exchange of messages between the client and a majority of

nodes. More recently, single-phase read operation, namely fast read, appeared in [DGLC04, VG06].

1. Reconfigurable Atomic Memory

The robustness in dynamic systems is more challenging. Although using majority of nodes is robust in face of a

bounded number of failures, in dynamic systems the number of failures might grow infinitely. That is,

reconfiguration has been introduced in RAMBO [LS02] to cope with accumulated failures. The reconfiguration

process replaces the sets of contacted nodes by active ones. The quorum replication is sufficient to cope with

failures occurring between subsequent reconfigurations.

Fast reconfiguration is at the core of fault tolerance in dynamic systems. More precisely, the faster the system

switches to the new active configuration the more fault-tolerant the system is. RDS [CGGMS05] proposes an

accelerated reconfiguration process coupled with fast read operations. The RDS algorithm proposes fast

reconfiguration using "Fast Paxos” [Lam98, BDFG03] consensus algorithm as a fully-integrated part of the

shared memory. RDS implements a leader-based protocol that makes the reconfiguration three message delays

long when the leader stabilizes. To conclude, RDS achieves a fault-tolerant MWMR shared memory especially

suited for dynamic networks.

2. Restricting the Gossip

Aforementioned algorithms suffer from a potential drawback when applied in large-scale systems where the

bandwidth capacity is bounded. Indeed, operation execution at the core of those algorithms relies on the fact that

clients know the currently used configuration (i.e., quorum system). Since any node is a potential client, an

approach is to maintain global knowledge at each node despite reconfiguration. For this purpose,

reconfiguration, one should use all-to-all gossip (message exchange). Therefore, the number of messages

produced after a reconfiguration is n�.

In [GMS05], the authors propose a substantial improvement in order to reduce the communication complexity

from quadratic to linear. The key idea is roughly to differentiate replicas from common nodes. In this paper,

replicas are called owners and they are considered locally by other nodes as active configuration members.

Restricting gossip among owners makes reconfiguration possible provided that at least one member of any

144

configuration is active. However, maintaining such knowledge at any node remains unachievable when the

number of owners is large, the reconfiguration is frequent, and a configuration member must remain active.

These reconfigurable approach requires O(n) during a reconfiguration while operations are executed in a

constant number of message delays as presented in Figure 1 (the client is represented by a C, and the quorum has

size 6).

3. Facing Scalability

Because of the recent growing interest for dynamic large-scale systems, a radically different approach has been

adopted. This approach relies strongly on a locality principle: participants maintain only a piece of the system

information depending on their location. Therefore reconfiguration is made locally and involves less messages.

1. Restricting Knowledge

Assuming that each node maintains the information about a restricted set of nodes, reconfiguration is executed

locally, thus, with low communication complexity. The direct drawback of such a solution is the operation

latency. Although reconfiguration message complexity is minimized, the time complexity of an operation is

increased. Indeed, minimizing knowledge prevents operation from completing after a single round-trip.

Suppose that any replica maintains knowledge of only one other replica in a logical overlay. Then, in order to

contact an entire quorum a phase will take as many message delays as the number of the quorum elements.

2. Adaptive Atomic Memory

Global/local reconfiguration paradigm is interestingly related to the proactive/reactive routing paradigm. The

local reconfiguration process is such that only reactive routing can be adopted by phases: a node (not the first

contacted one) belonging to the quorum is not identified before the phase reaches its direct neighbor. Unlike

local reconfiguration, global reconfiguration process requires that a phase executes a pro-active routing, where

the whole set of nodes is known when the phase starts. Algorithms based on the first technique are called non-

adaptive while algorithms based on the second one are called adaptive according to [NW03]. This paper extends

this notion to atomic memory.

Recently, some authors have focused on dynamic types of Quorums [NW03, NN05, AM05]. In [AM05],

another node is inserted by adding a vertex in a De Bruijn graph, while vicinity is defined by graph neighboring.

For instance, the Dynamic Path [NW03] defines quorums in a logical overlay using Voronoi cells and the

Dynamic And-Or Quorum System [NN05] defines quorums as a set of leaves.

DSM finds its way into such emergent ideas. SAM [AGGV05, AGGV06], is a read/write memory using

adpative operations. Quorums are defined as rows and columns of a dynamic torus grid. This solution provides

local reconfiguration, that is, the message required to reconfigure after a single departure is constant. In the

meanwhile, the adaptive operations require O(�n) message delays to complete, where all nodes of a (�n)-sized

quorum are contacted in turn. In the meanwhile reconfiguration requires a constant number of messages, since

the number of neighbors is constant. Figure 2 represents the way a quorum is contacted in this example of

adaptive approach.

145

3. Probabilistic Atomic Memory

In order to guarantee progress and consistency in asynchronous dynamic systems the previous solutions make

some assumptions. For instance, in [CGGMS05] reconfiguration is guaranteed provided that the system

stabilizes. Likewise, failure detection is required in [AGGV06] to guarantee consistency.

Recently, probabilistic approaches have been investigated to implement quorum systems. Malkhi et al. defined

in [MRWW01] a probabilistic quorum system (i.e. �-intersecting quorum system) as a quorum system whose

quorum intersection is guaranteed with probability (1-�). This approach brings a solution for asynchronous

dynamic systems where ensuring intersection deterministically remains unachievable without constraining

assumptions.

In [AM05] the authors propose a logical overlay structure using a De Bruijn graph in order to maintain k-

connectivity. They make this structure dynamic by defining join and leave primitives, each requiring local

reconfiguration with O(log n) messages before the structure stabilizes. They define quorums that intersect with

high probability. To achieve this result, their approach consists in executing O(�n) random walks (cf. Figure 3),

each of length O(log n). That is, a quorum access lasts O(log n) message delays.

146

4. Structureless Atomic Memory

Differently, it is noteworthy that the structure imposes several constraints due to the maintenance of the overlay.

When dynamic events—such as join or leave events—occur, the overlay changes. Therefore, the overlay must

be readapted to reflect changes involving message exchanges.

Consequently, providing building blocks that are independent from the underlying overlay minimizes

communication complexity. In [GKMR06] the authors present a way to preserve object persistence through the

use of a set of nodes called a core. This core can be used to preserve information persistence, such as quorums,

and thus, can serves as DSM building block.

The key idea is temporal in the sense that an object persists if operations are sufficiently frequent regarding to

the system dynamism, or churn---the rate at which nodes enter and leave the system. Roughly speaking, if the

object is written at enough locations with a reasonable frequency then the object persists. This building block

can be used to provide efficient quorum access with weak maintenance constraint. Figure 4 presents an access

through dissemination that is O(log n) message delays long.

4. Conclusion

This paper classifies a panel of achievements in the context of quorum-based solution for large-scale dynamic

DSM implementation. Two major problems arise from large-scale and dynamic DSM: the time complexity

required by operation and the communication complexity required to guarantee consistency while participants

join or leave and while object state must reflect write operations. This paper enlightens the inherent tradeoff

between these two fundamental issues.

References

[Lam86] On interprocess communication, Part II: Algorithms, L. Lamport, Distributed Computing, 1, p.86—

101, 1986.

[HW90] Linearizability: a correctness condition for concurrent objects, M. P. Herlihy and J. M. Wing, ACM

Trans. on Programming Languages and Systems, p.463—492, 12(3), 1990.

147

[Lyn96] Distributed Algorithms, Lynch, N., Morgan Kaufmann Publishers, 1996.

[ABD95] Sharing memory robustly in message-passing systems, H. Attiya, A. Bar-Noy, and D. Dolev, J. ACM

1995, 42(1), p. 124—142.

[DGLC04] How fast can a distributed atomic read be?, P. Dutta and R. Guerraoui and R. R. Levy and A.

Chakraborty, Proc. of the 23th annual symposium on Principles of distributed computing, p. 236—245, 2004.

[VG06] How fast can a very robust read be?, M. Vukolic and R. Guerraoui, Proc. of the 25th annual symposium

on Principles of distributed computing, 2006.

[LS02] RAMBO: A reconfigurable atomic memory service for dynamic networks, N. Lynch and A. Shvartsman,

Proc. of 16th International Symposium on Distributed Computing, p.173—190, 2002.

[CGGMS05] Reconfigurable Distributed Storage for Dynamic Networks, G. Chockler and S. Gilbert and V.

Gramoli and P. Musial and A. Shvartsman, Proc. of 9th International Conference on Principles of Distributed

Systems, 2005.

[Lam98] The Part-time Parliament, Lamport, L., ACM Transactions on Computer Systems 16(2), p.133—169,

1998.

[BDFG03] Reconstructing Paxos, R. Boichat and P. Dutta and S. Frolund and R. Guerraoui, SIGACT News

34(2), p.42—57, 2003.

[NW03] Scalable and dynamic quorum systems, M. Naor and U. Wieder,, In Proc. of the 22th annual

symposium on Principles of distributed computing, 2003, p.114—122.

[NN05] The Dynamic And-Or Quorum System, U. Nadav and M. Naor, Distributed algorithms p.472—486,

3724, 2005.

[AM05] Probabilistic quorum systems for dynamic systems, I. Abraham and D. Malkhi, Distributed Systems

18(2), p.113—124, 2005.

[GKMR06] Core Persistence in Peer-to-Peer Systems: Relating Size to Lifetime, V. Gramoli and A.-M.

Kermarrec and A. Mostefaoui and M. Raynal, Technical Report n 1799, IRISA/INRIA Universite de Rennes 1 -

Campus de Beaulieu, Rennes, France, 2006.

[AGGV05] P2P Architecture for Self* Atomic Memory, E. Anceaume and M. Gradinariu and V. Gramoli and

A. Virgillito, Proc. of 8th IEEE International Symposium on Parallel Architectures, Algorithms and Networks

p.214—219, 2005

[AGGV06] Self-Adjusting Atomic Memory for Dynamic Systems based on Quorums On-The-Fly. Correctness

Study., E. Anceaume and M. Gradinariu and V. Gramoli and A. Virgillito, Technical Report n 1795,,

IRISA/INRIA Universite de Rennes 1 - Campus de Beaulieu, Rennes, France, 2006.

[MRWW01] Probabilistic quorum systems, D. Malkhi and M. Reiter and A. Wool and R. Wright, Information

and Computation 170(2), p.184—206, 2001.

148

Dependable Middleware for Unpredictable Environments

Odorico M. Mendizabal, António Casimiro, Paulo Veríssimo

{omendizabal, casim, pjv}@di.fc.ul.pt

FC/UL2

Introduction

Nowadays, different types of systems with critical dependability requirements can be envisioned, for example

systems and applications in the domain of intelligent home devices, transportation systems or critical services

infrastructure.

In all these areas the environment surrounding the applications is open, unpredictable or uncertain. Because of

this, it is hard, sometimes even impossible, to provide certain guarantees or to develop dependable applications

with timeliness or security requirements based on classical distributed system models, for example synchronous

and asynchronous ones. The synchronous distributed computing model provides processes with bounds on

processing time and message transfer delay. Differently, the asynchronous model is characterized by the absence

of any time bounds.

To develop systems using synchronous models, it is necessary to know a priori the time bounds. Many

distributed problems can be solved assuming this model, but if some bound is violated, nothing can be

guaranteed about the system safety properties. On the other hand, solutions based on asynchronous models do

not rely on any time bounds. Unfortunately, because this is much weaker, some problems are impossible to solve

in asynchronous environments, such as the well known consensus problem.

A promising way to address these problems consists in assuming a hybrid distributed system model. Thus, it is

possible to devise models weaker than synchronous models but stronger than asynchronous models. A recent

work presents the wormhole[13], a hybrid distributed system model that allows to overcoming some of the

difficulties faced when asynchronous models (uncertainty) meet timing specifications (predictability).

2Faculdade de Ciências da Universidade de Lisboa. Bloco C6, Campo Grande, 1749-016 Lisboa, Portugal.

Navigators Home Page: http://www.navigators.di.fc.ul.pt. This work is partially supported by the EC, through

project IST-FP6-STREP-26979 (HIDENETS), through the Large-Scale Informatics System Laboratory

(LASIGE).

149

The wormhole model is composed by different parts that can be defined assuming different sets of properties,

which could map into different synchrony levels. The most synchronous parts can provide strong properties to

the model. Considering such a context, a potentially asynchronous part can rely on specialized services provided

by a more synchronous part, such as duration measures, timing failure detection and timely execution1 .

In fact, hybrid models are suitable to reason about applications running over open and unpredictable

environments. High synchrony levels on distributed systems can be supported by existent technologies (e.g. GPS

and dedicated networks).

2 Dependable Middleware: Initial Ideas

The possibility of constructing more dependable applications assuming these hybrid models motivates the

development of middleware tailored for unpredictable environments. The conception of a middleware suitable to

these environments needs to take into account many important aspects of distributed and fault tolerant systems,

such as timing failure detection, accurate measure services, QoS adaptation, replicas management, etc. Previous

works researching some of these features present very important issues and encourage us to further investigate

resilient solutions for unpredictable environments.

A timing failure detection approach using a specific instance of the wormhole model, called TCB was proposed

in [2]. The TCB model is used to provide specialized services such as duration measurement, timely execution

and timing failure detection. However, we may need to adequate the interface between the timing failure detector

and applications, making use of this service as a building block to construct other services, maybe with different

failure detection properties2 .

In [1] a framework for dependable QoS adaptation using TCB was presented. The TCB has the knowledge of

available resources, measured in terms of timeliness. Therefore, for some classes of applications, for example the

time-elastic3 ones, it is possible to ensure the coverage stability of the applications, based in probability

distribution function (pdf) that represents the actual distribution of the observed timing variable that determines

the available QoS. However, there are a number of more or less subtle issues still requiring attention before the

approach can effectively be used in concrete applications. For instance, we will investigate suitable probabilistic

distributions to generate pdfs in order to enhance the adaptation of the applications to achieve these

improvements we intent to apply techniques based on stochastic models and refine the results through

experimental evaluation, for instance using the techniques described in [6, 7].

Providing fault-tolerance in such unpredictability environments is a challenging task. Thus, we will investigate

an adaptive model for fault-tolerant distributed computing using hybrid models. For this we intend to focus on

the well-known consensus problem, taking into account adaptability and timeliness needs. In [2] it was discussed

the anatomy of timing failures and some problems observed due to these failures. Unexpected delay,

1In this work we will focus on timely requirements, but other facets, such as security, could also be considered.

2Other failures detectors for crash or omission could be implemented over a timed failure detection building

block.

3Time-elastic application are those whose bounds can be increased or decreased dynamically.

150

contamination and decreased coverage are possible undesired behaviors in the faulty systems. These

observations together with dependable QoS adaptation remarks showed in [1], give us a motivation to devise

protocols to solve the consensus relying on QoS negotiation and monitoring.

Once that consensus can be solved in these environments, reliable atomic broadcast as well as transaction-based

protocols can be developed. In [3] it is proven that consensus and atomic broadcast are equivalent problems in

asynchronous distributed systems prone to process crashes.

3. Related Work

In order to guarantee timing and safety properties in unpredictable environments, some authors have defined

distributed system models stronger than synchronous and weaker than asynchronous. Cristian and Fetzer have

devised the timed-asynchronous model, where the system alternates between synchronous and asynchronous

behavior, and where parts of the system have just enough synchronism to make decisions such as detection of

timing failures [4]. Almeida e Veríssimo have devised the quasi-synchronous model, where parts of the system

have enough synchronism to perform real time actions with a certain probability[14]. Others papers dealt with

system that are not completely asynchronous, e.g. [5], they are called partially synchronous models.

As stated before, we will investigate solutions based in hybrid models, in particular the wormhole model[12, 13].

Wormhole features several subsystems following different sets of assumptions, e.g. about synchrony or faults. In

the context of our work we are specially interested in applying the wormhole model to distributed systems, rather

than locally to a particular node. On the other hand, we are more interested in the time facet of wormholes.

In [2], it was presented a generic timing fault detection approach reasoning in terms of QoS specification to

express timeliness and reliability requirements. Other works propose alternative solutions to timely failure

detection [9, 10]. These approach are not provide a general solution, they only secure a restrict semantics, or

simply provide ad-hoc solutions.

Many works dealing with QoS assume that it is possible to reserve resources[11, 15]. Works dealing with

mapping application level requirements into lower level (support subsystem, network, OS) QoS requirements,

provide the grounds for the definition of useful interfaces under hybrid models between applications and the

middleware.

Further, to provide a suitable protocol to solve consensus in these unpredictable environments works related to

QoS adaptation, discussed above, could be very important to achieve the first issues. Therefore, in [8] was

presented a hybrid and adaptive model to solve consensus. However, the authors assuming that the protocol run

over an architecture equipped with QoS capabilities. We want to devise a protocol to solve the consensus

providing the QoS support through a middleware based in the wormhole model.

Reference

[1] A. Casimiro and P. Veríssimo. Using the timely computing base for dependable QoS adaptation. In

Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems, pages 208–217, New Orleans, USA,

October 2001. IEEE Computer Society Press.

151

[2] A. Casimiro and P. Veríssimo. Generic timing fault tolerance using a timely computing base. In Proceedings

of the 2002 International Conference on Dependable Systems and Networks, pages 27–36, Washington DC,

USA, June 2002. IEEE Computer Society Press.

[3] T. Deepak Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,

43(2):225–267, 1996.

[4] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. In Proceedings of the 28th

IEEE Symposium on Fault Tolerant Computing Systems (FTCS-28), pages 140–149, June 1998.

[5] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,

35(2):288–323, 1988.

[6] L. Falai and A. Bondavalli. Experimental evaluation of the QoS of failure detectors on wide area network. In

DSN, pages 624–633, 2005.

[7] L. Falai, A. Bondavalli, and F. Di Giandomenico. Quantitative evaluation of distributed algorithms using the

neko framework: The nekostat extension. In LADC, volume 3747 of Lecture Notes in Computer Science, pages

35–51. Springer, 2005.

[8] S. Gorender, R. A. Macêdo, and M. Raynal. A hybrid and adaptive model for fault-tolerant distributed

computing. In DSN, pages 412–421, 2005.

[9] S. Krishnamurthy, W. H. Sanders, and M. Cukier. A dynamic replica selection algorithm for tolerating

timing faults. In DSN, pages 107–116. IEEE Computer Society, 2001.

[10] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive framework for tunable consistency and

timeliness using replication. In DSN, pages 17–26. IEEE Computer Society, 2002.

[11] F. Siqueira and V. Cahill. Quartz: A QoS architecture for open systems. In ICDCS, pages 197–204, 2000.

[12] P. Veríssimo. Uncertainty and Predictability: Can They Be Reconciled? In Future Directions in Distributed

Computing, volume 2584 of lncs, pages 108–113. spring, 2003.

[13] P. Veríssimo. Travelling through wormholes: a new look at distributed systems models. SIGACTN: SIGACT

News (ACM Special Interest Group on Automata and Computability Theory), 37(1, (Whole Number 138)):—,

2006.

[14] P. Veríssimo and C. Almeida. Quasi-synchronism: a step away from the traditional fault-tolerant real-time

system models. Bulletin of the Technical Committee on Operating Systems and Application Environments

(TCOS), 7(4):35–39, 1995.

[15] D. Xu, D. Wichadakul, and K. Nahrstedt. Multimedia service configuration and reservation in

heterogeneous environments. In ICDCS, pages 512–519, 2000.

152

A Language Support for Fault Tolerance

in Service Oriented Architectures

Nicolas Salatge

LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 04 – France

Introduction

Service Oriented Architectures (SOA) [1] enable the development of loosely-coupled and dynamic applications.

Such applications are based on a core notion, the notion of service, and on a contract linking a client and a

service provider. This type of architecture is currently used for large-scale applications like e-commerce, but in

the next future for applications having stronger dependability requirements.

Beyond contract issues, the problem relates to a fundamental client-provider conflicting standpoint. The clear

aim of a provider is to develop a service to attract as many clients as possible all over the world. As a matter of

fact, he is not concerned with detailed dependability needs of individual clients. A client developing a WS-based

application with dependability constraints has a different perception. The aim is certainly to find the right service

on the Net providing the expected functionality, but this is not enough. Some additional specific dependability

constraints must be fulfilled and are very much dependent of specific dependability service oriented application.

This exactly the sort of problem we tackle in our work. Application developers look at Web Services as COTS

(Commercial Off-The_Shelf) components and thus they ignore their implementation and their behaviour in the

presence of faults.

In a sense, clients need to develop specific fault tolerance mechanisms well suited to their application. To this

aim, we propose a framework to help clients making Specific Fault Tolerance Connectors (SFTC) that

implement filtering and other robustness and error detection techniques (e.g. runtime assertions) together with

153

recovery mechanisms that are triggered when the WS does not satisfy anymore the dependability specifications

(see figure 1). The same Web Service can be used in several service oriented applications with different

dependability constraints and thus taking advantage of several connectors.

Figure 1: The Specific Fault Tolerance Connectors concept

The problem is similar to the use of COTS components in safety critical systems, and previous work showed that

mechanisms like fault containment wrappers was a possible solution [2]. In the AOS context, pre-defined

wrappers cannot be defined to satisfy all possible needs. The approach must be more adaptive and enable

dependability mechanisms 1) to be defined on a case-by-case basic for a given WS usage and 2) to be highly

dynamic and possibly changed according to the needs. To this aim it is mandatory to provide SOA developers

with:

• a language support (DeWeL) to describe the dependability features of a connector and,

• a support infrastructure to dynamically manage and run connectors in real applications.

We present the main characteristic of DeWeL in section 1. A program example is given in Section 2. Section 3

introduces the executive support of connectors developed in DeWeL. Section 4 discusses the main benefits of

this approach and concluded this paper.

1. DeWeL Specification

DeWeL provides appropriate abstractions and notations to reach the right level of expressiveness together with

the appropriate language restriction to obtain reliable code. With these language constraints (see table 1.1), one

can expect improving the quality of the connector implementation, i.e. the quality of the runtime code because

some critical properties can be verified at compile-time (e.g. program block termination, predictable usage of

resources, etc.). The merit of this approach is to ensure a high confidence level in the connector development.

For instance, a user can reuse pre-defined recovery strategies like re-directions, replication protocols, generation

and catch of exceptions, and insert executable assertions to input and output messages …etc. The objective is to

help the user not familiar with Web Services (i.e. WSDL syntax, SOAP messages, etc,) in writing robust code

corresponding to its fault tolerance needs.

In order to avoid learning a new language and, more importantly, to simplify its use and understanding for the

user, DeWeL borrows its syntax from C (for conditional actions, arithmetic and logic expressions, etc.).

However, DeWeL differs very much from general purpose programming languages like C. It can be seen as a

declarative language, in particular regarding recovery strategies that are only parameterized, and as a restricted

imperative language for the expression of runtime assertions. The later correspond in pre and post conditions that

encapsulate the execution of the service (like Before, After, Around advices in Aspect Oriented Programming).

154

Restrictions language Error avoidance Checked property

- No dynamic allocation

- No pointers

Bus error, Segmentation

fault, not enough memory

- No files

- No indexed access to arrays Table overflow

Resources and

memory control

- No standard loops (while, for)

- No functions

- No method overriding

- No recursive construct

Service hang Termination

- No external access to other users

data space or system resources
Data corruption Non-interference

Table 1.1: Essential characteristics of DeWeL

2. Example of DeWeL program

In this example only one WS operation is given (ItemSearch) for the AWSECommerceService of Amazon. The

original WSDL document1 is extended with fault tolerance mechanisms. A DeWeL program is in fact developed

from a pre-defined template composed of five main sections (see figure 2.1):

• Declaration of the selected RecoveryStrategy;

• Definition of Pre-Processing assertions;

• Definition of Post-Processing assertions;

• Definition of Communication-Exception handlers;

• Definition of ServiceException handlers.

Figure 2 shows a template in DeWeL and the way to produce a Specific Fault Tolerant Connector

implementation. The example given here targets the Amazon Web Service and shows how active replication can

be selected (line 6) and how various simple assertions are implemented (line 10-16 for pre-processing and 19-30

for post-processing assertions). Error handlers can be defined when the service is unreachable (Communication-

Exception, line 31-34) or when it returns a SOAP error (Service-Exception, line 35-39).

In this very simple example, the pre-processing assertions simply checks for illustration an upper bound on some

parameter and the post-processing assertion filters both unacceptable replies and upper bounds on SOAP return

messages. Such example has been used in our first experiments. Among the six available contracts for Amazon,

three Amazon WS replicas (in Canada, France and Japan) have been used to illustrate an active replication error

recovery strategy.

1 http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

155

Figure 2.1: Example of a DeWeL program (for Amazon)

3. Runtime & Management Support

The management and the execution of DeWeL connectors rely on a specific platform that is a third-party

infrastructure between clients and providers. The storage, the look-up, the delivery, the loading and the

execution of Specific Fault Tolerance Connectors are supported by the IWSD platform, an Infrastructure for

Web Services Dependability. As soon as a DeWeL program has been compiled, the corresponding connector

(i.e. a dynamic library) is created and stored into the SFTC Repository of the platform. At runtime, the platform

provides support to perform the recovery mechanisms requested by the user.

The IWSD platform (see figure 3.1) is composed of several software components responsible for the following

actions:

• 1) Interception and routing of SOAP messages from clients or providers.

• 2) Processing of requested « Service Web » requests using a user-defined connector developed in DeWeL.

The corresponding dynamic library is loaded so that pre and post-processing can be scheduled at runtime.

156

• 3) Compilation of DeWeL programs and storage of corresponding connectors into the SFTC Repository,

management of user accounts and configuration information (e.g. communication endpoints replicas for a

given service).

• 4) Health Monitor that is responsible for (i) the self-checking of the IWSD platform and (ii) the evaluation

of the current health of WS in operation by means of errors reported by the active connectors.

Figure 3.1: IWSD: Infrastructure of Web Service Dependability

Based on elements given into the original WSDL document of the Web Service, a compiler is able to generate

specific non-functional mechanisms as a connector and attached to the service. A new service is obtained with

better but more importantly user-defined fault tolerance features. This enhanced version can be attached to a new

WSDL document and a new access point. This new access point is registered into IWSD. Each connector is thus

visible as a WSDL document on the Web. In practice, this document is used by clients to access a given

connector targeting a web service, in other words, to access a WS through a Specific Fault Tolerance Connector.

As show in the figure the platform itself can be made fault tolerant using conventional techniques, for instance

using a duplex architecture to tolerate crash faults. A detailed description of IWSD is out of the scope of this

paper (see [3]).

4. Discussion and conclusion

Dependability issues are the major topic limiting the deployment of SOA in critical domains [4]. The main

founders of the Web Services technology (IBM et Microsoft) have spent huge efforts to develop specific WS

protocols to guaranty security and safety properties [5]. These protocols are enforced by means of a specific

middleware enabling the insertion of dependability mechanisms [6, 7], but this solution is intrusive. Some

platforms have also emerged to apply generic recovery strategies using replication [8, 9] but this approach

targets WS implementation in isolation.

157

To address this issue and make adaptive fault tolerance mechanisms to client needs, we propose an infrastructure

enabling clients to develop, manage and execute Specific Fault Tolerance Connectors to Web Services. A key

feature of this approach is to rely on a Domain Specific Language to develop connectors. DeWeL aims at

providing the necessary and sufficient language features to (1) declare and customize built-in fault tolerance

strategies and (2) express runtime assertions for each individual operation of a service. The language is

supported by a tool suite that applies checks at multiple levels in order to produce robust connectors. Its

expressiveness is limited by construction to reach this aim but its conciseness is of high interest to generate

reliable code.

The evaluation of a DSL is not always easy as it relates to compiler facilities. However, the essential

characteristics of a DSL are expressiveness, conciseness, performance, properties that must be enforced as

discussed in [10]. The evaluation of expressiveness of a DSL in practice implies the use of a large set of

applications. We have used DeWeL to produce SFTCs for about 150 Web Services, and implemented a TMR

connector with Amazon. On these tested services, the DeWeL expression is 18 times smaller that its counterpart

in C++, for a program with empty assertion sections. The average overhead is about 3,5% of the response time.

In addition, no specific protocol is needed to use DeWeL connectors in practice. Unlike to SLAs carried out by

WS-Agreement protocol [11] and the WSOL language [12], DeWeL does not specify the quality of service of

the provider, IWSD just verifies it owing to connectors. From practical viewpoint, the core of this project has

been realized with the Xerces-C library. It roughly represents 65000 codes lines corresponding to the

implementation of the DeWeL compiler and the connector support infrastructure.

References

[1] H. He, "What is Service-Oriented Architecture?" http://webservices.xml.com/pub/a/ws/2003

/09/30/soa.html, Sept, 2003.

[2] F. Salles, M. R. Moreno, J. C. Fabre, and J. Arlat, "Metakernels and fault containment

wrappers," 29th IEEE International Symposium on Fault-Tolerant Computing (FTCS-29),

Madison (USA), pp. 22-29, 15-18 June 1998.

[3] N. Salatge and J.-C. Fabre, "A Fault Tolerance Support Infrastructure for Web Services," LAAS

Research Report n°05703, 20 pages, 2005.

[4] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy, "Dependability in the Web Services

Architecture," In Architecting Dependable Systems. LNCS 2677, June 2003.

[5] T. S. Donald F. Ferguson, Brad Lovering, John Shewchuk, "Secure, Reliable, Transacted Web

Services: Architecture and Composition," IBM and Microsoft Corporation,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

wsOverView.asp, Septembre 2003.

[6] O. Hasan and B. Char, "A deployment-ready solution for adding quality-of-service features to

web services " The 2004 International Research Conference on Innovations in Information

Technology, 2004.

158

[7] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan, "Thema:

Byzantine-fault-tolerant middleware for Web-service applications," Reliable Distributed

Systems, 2005. SRDS 2005. 24th IEEE Symposium pp. Page(s):131 - 140 2005.

[8] D. Liang, C.-L. Fang, and C. Chen, "FT-SOAP: A Fault-tolerant web service," Tenth Asia-

Pacific Software Engineering Conference, Chiang Mai, Thailand, 2003.

[9] G. T. Santos, L. C. Lung, and C. Montez, "FTWeb: A Fault Tolerant Infrastructure for Web

Services," In the Proceedings of the 2005 Ninth IEEE International EDOC Enterprise

Computing Conference (EDOC'2005) 2005.

[10] C. Consel and R. Marlet, "Architecturing Software Using A Methodology for Language

Development," In International Symposium on Programming Languages, Implementations,

Logics and Programs (PLILP '98), LNCS 1490, Pisa, Italy, pp. 170-194, 1998.

[11] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke,

and M. Xu, "Web Services Agreement Specification (WS-Agreement)," Draft 18 Version 1.1,

May 2004.

[12] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma, "Management applications of the

Web Service Offerings Language (WSOL) " Information Systems 30 pp. 564–586, 2005.

159

Challenges for an Interoperable Data Distribution Middleware
Sirio SCIPIONI

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza"

Via Salaria 113, 00198 Roma, Italia.

scipioni@dis.uniroma1.it

Introduction

Middleware for data distribution is a natural match, and often a fundamental architectural building block, for a

large class of real-time, mission, and safety critical application domains, such as industrial process control, air

traffic control, defense systems, etc.

Historically, most of the pub/sub middleware standards such as the Common Object Request Broker

Architecture (CORBA) Event Service (CosEvent), the CORBA Notification Service (CosNotification), and Java

Message Service (JMS), etc., as well as most proprietary solutions, have lacked the support needed by real-time,

mission, and safety critical systems. The main limitations are typically due to the limited or non-existent support

for Quality of Service (QoS), and the lack of architectural properties which promote dependability and

survivability, e.g., lack of single point of failure.

Recently, in order to fill this gap, the Object Management Group (OMG) has standardized the Data

Distribution Service (DDS). This standard gathers the experience of proprietary real-time pub/sub middleware

solutions which had been independently engineered and evolved in niches, within the industrial process control,

and in the defense systems applications domain. The resulting standard is based on a completely decentralized

architecture, and provides an extremely rich set of configurable QoS.

160

Currently, several vendors provide their own DDS implementation. Each implementation is

characterized by additional services and proprietary extensions to the standard. At present, the DDS specification

does not address the issue of interoperability between implementations from different vendors. Hence the

integration of multiple DDS applications based on heterogeneous implementations requires the development of

custom bridges between them.

For this reason, OMG is currently working on defining a companion specification for DDS, describing a

standard interoperability protocol which will allow standard DDS implementations from different vendors to

exchange messages.

In this paper we identify the main challenges in the realization of a scalable, QoS-driven, interoperable data

distribution middleware. In particular, we identify three of the basic DDS features, related respectively to

scalable diffusion, timeliness and data availability.

1. Data Distribution Service

It is worth mentioning that the standard defines two level of interfaces. At a lower level, it defines a Data Centric

Publish Subscribe (DCPS) whose goal is to provide an efficient, scalable, predictable, and resource aware data

distribution mechanism. Then, on top of the DCPS, it defines the Data Local Reconstruction Layer (DLRL), an

optional interface which automates the reconstruction of data, locally, from updates received, and allows the

application to access data as if it was local.

1.1. DDS Conceptual Model

The DDS conceptual model is based on the abstraction of a strongly typed Global Data Space (GDS) where

publisher and subscriber respectively write (produce) and read (consume) data. In the reminder of this Section

we will provide a precise characterization of the entities that constitute this global data space.

• Topic. A topic defines a type that can be legally written on the GDS. In the present standard, topics

are restricted to be nonrecursive types defined by means of OMG Interface Definition Language

(IDL). The DDS provides the ability to distinguish topics of the same type by relying on the use of a

simple key. Finally, topics can be associated with specific QoS.

• Publisher. A publisher, can declare the intent of generating data with an associated QoS, and to write

the data in the GDS. The publisher declared QoS has to be compatible with that defined by the topic.

• Subscriber. Subscribers read topics in the global data space for which a matching subscription exist

(the rules that define what represents a matching subscription are described below).

• Subscription. A subscription is the logical operation which glues together a subscriber to its matching

publishers. In the DDS a matching subscription has to satisfy two different kind of conditions. One

set of conditions relate to concrete features of the topic, such as its type, its name, its key, its actual

content. The other set of conditions relate to the QoS. Regarding the QoS, the matching follows an

requested/offered model in which the requested QoS has to be the same, or weaker, then the offered.

161

Discovery. Another key feature at the foundation of DDS is that all information needed to establish a

subscription is discovered automatically, and, in a completely distributed manner. The DDS

discovery service, finds-out and communicates the properties of the GDS’s participants, by relying on

special topics and on the data dissemination capability provided by the DDS.

1.2. Quality of Service

One of the key distinguishing features of the DDS when compared to other pub/sub middleware is its extremely

rich QoS support. By relying on a rich set of QoS policies, the DDS gives the ability to control and limit (1) the

use of resources, such as, network bandwidth, and memory,(e.g. with TIME_BASED_FILTER and

RESOURCE_LIMITS QoS policy) and (2) many non functional properties of the topics, such as, persistence,

reliability, timeliness, etc (e.g. through DEADLINE, DURABILITY, DESTINATION_ORDER and other QoS

policies).

2. Challenges

In this section we analyze the challenges hidden behind the realization of an interoperable DDS and propose

some basic solutions. The challenges are identified according to three classes of requirements addressed by the

DDS specification:

• Scalability: requirements for allowing information diffusion to a number of participants that can grow

indefinitely and change overtime.

• Timeliness: requirements for QoS properties related to deadline-constrained message delivery.

• Data availability: requirements for QoS properties related to reliable delivery of events, that require

to persistently store messages for retransmission and data objects for surviving subscribers failures.

We abstract the components for addressing the requirements into a service architecture where we identify three

services, one for each of the above-identified classes. Each service encapsulates a specific solution that

introduces specific modifications into the interoperability protocol.

2.1. Scalability

The ability to support a large number of subscribers and high message rates is one of the main objectives of the

DDS specification. Publishers and subscribers are organize in an overlay according to a relationship of mutual

knowledge between each other. The basic DDS semantics can be implemented through a simple overlay

structure, where a publisher for a topic is directly linked with all the subscriber for the same topic. This solution

can be implemented in a simple and efficient way, then it should be the first, natural option in basic, small-scale

applications. However, when the number of subscriber grows as well as the rate of update of the data objects,

this basic overlay organization presents obvious scalability limits.

2.2. Timeliness

The enforcement of QoS policies regarding data timeliness, such as DEADLINE and LATENCY_BUDGET, is

based on the capability of the DDS implementation to determine the time elapsed by messages from the source

162

to the destination. This obviously requires the presence of a logical global clock which is in practice a

synchronization mechanism between clocks entities composing the DDS.

Reliable clock synchronization is a popular problem in distributed systems and several solutions have

been proposed. The challenges posed by the DDS scenario are the possible lack of a time reference accessible by

all nodes and the possible large number of nodes in the system. Moreover a further challenge is how to achieve

clock synchronization through a standard protocol involving different implementations of DDS.

2.1. Scalability

The idea behind the DDS data model is to achieve a logical global data space where data is written by publishers

and read by subscribers. In general, this association between data and subscribers needs to be managed more

flexibly for what concerns data availability QoS. In particular the realization of the DURABILITY property

require data objects to survive the respective subscribers. Similarly, the HISTORY and LIFESPAN policies

require data samples to be kept available after their publication, i.e. to survive the respective publishers.

Hence, a DDS implementation should include a component capable of storing copies of data objects and

implement algorithms to keep them consistent. In other words support for data availability QoS is achieved by

implementing a Interoperable Persistent Storage Service (IPSS) within the DDS which should be available to

both subscribers and publishers for storing updated data objects and histories of data samples. The PSS

component could be implemented in separate dedicated set of replicated servers or as a peer-to-peer

infrastructure among publishers and subscribers.

163

Proactive Resilience
Paulo Sousa

University of Lisboa, Portugal
pjsousa@di.fc.ul.pt

Abstract
Building resilient intrusion-tolerant distributed systems is a somewhat complex task. Recently,

we have increased this complexity, by presenting a new dimension over which distributed systems
resilience may be evaluated — exhaustion-safety. Exhaustion-safety means safety against resource
exhaustion, and its concrete semantics in a given system depends on the type of resource being
considered. We focus on replicas and on guaranteeing that the typical assumption on the maximum
number of replicas failures is never violated. An interesting finding of our work is that it is
impossible to build a replica-exhaustion-safe distributed intrusion-tolerant system under the
asynchronous model.

This result motivated our research on finding the right model and architecture to guarantee
exhaustion-safety. The main outcome of this research was proactive resilience — a new paradigm
and design methodology to build replica-exhaustion-safe intrusion-tolerant distributed systems.
Proactive resilience is based on architectural hybridization: the system is asynchronous in its most
part and it resorts to a synchronous subsystem to periodically recover the replicas and remove the
effects of faults/attacks.

We envisage that proactive resilience can be applied in many different scenarios, namely to
secret sharing, and to state machine replication. In the latter context, we present in this paper a new
result, yet to be published, that a minimum of 3f + 2k + 1 replicas are required for tolerating f

Byzantine faults and maintaining availability, k being the maximum number of replicas that can be
recovered simultaneously through proactive resilience.

1. Exhaustion-Safety and Proactive Resilience

A distributed system built under the asynchronous model makes no timing assumptions about the
operating environment: local processing and message deliveries may suffer arbitrary delays, and
local clocks may present unbounded drift rates [7, 4]. Thus, in a (purely) asynchronous system one
cannot guarantee that something will happen before a certain time.

Consider now that we want to build a dependable intrusion-tolerant distributed system, i.e., a
distributed system able to tolerate arbitrary faults, including malicious ones. Can we build such a
system under the asynchronous model?

This question was partially answered, twenty years ago, by Fischer, Lynch and Paterson [5],
which proved that there is no deterministic protocol that solves the consensus problem in an
asynchronous distributed system prone to even a single crash failure. This impossibility result
(commonly known as FLP) has been extremely important, given that consensus lies at the heart of
many practical problems, including membership, ordering of messages, atomic commitment, leader
election, and atomic broadcast. In this way, FLP showed that the very attractive asynchronous
model of computation is not sufficiently powerful to build certain types of fault-tolerant distributed
protocols and applications.

What are then the minimum synchrony requirements to build a dependable intrusion-tolerant
distributed system?

If the system needs consensus (or equivalent primitives), then Chandra and Toueg [3] showed
that consensus can be solved in asynchronous systems augmented with failure detectors (FDs). The
main idea is that FDs operate under a more synchronous environment and can therefore offer a
service (the failure detection service) with sufficient properties to allow consensus to be solved.

164

But what can one say about intrusion-tolerant asynchronous systems that do not need
consensus? Obviously, they are not affected by the FLP result, but are they dependable?

Independently of the necessity of consensus-like primitives, we have recently shown that
relying on the assumption of a maximum number of f faulty nodes under the asynchronous model
can be dangerous. Given that an asynchronous system may have a potentially long execution time,
there is no way of guaranteeing exhaustion-safety, i.e., that no more than f faults will occur,
especially in malicious environments [11]. Therefore, we can rephrase the above statement and say
that the asynchronous model of computation is not sufficiently powerful to build any type of
(exhaustion-safe) fault-tolerant distributed protocols and applications.

To achieve exhaustion-safety, the goal is to guarantee that the assumed number of faults is
never violated. In this context, proactive recovery seems to be a very interesting approach [10]. The
aim of proactive recovery is conceptually simple – components are periodically rejuvenated to
remove the effects of malicious attacks/faults. If the rejuvenation is performed frequently often,
then an adversary is unable to corrupt enough resources to break the system. Proactive recovery has
been suggested in several contexts. For instance, it can be used to refresh cryptographic keys in
order to prevent the disclosure of too many secrets [6, 16, 1, 15, 9]. It may also be utilized to restore
the system code from a secure source to eliminate potential transformations carried out by an
adversary [10, 2].

Therefore, proactive recovery has the potential to support the construction of exhaustion-safe
intrusion-tolerant distributed systems. However, in order to achieve this, proactive recovery needs
to be architected under a model sufficiently strong that allows regular rejuvenation of the system. In
fact, proactive recovery protocols (like FDs) typically require stronger environment assumptions
(e.g., synchrony, security) than the rest of the system (i.e., the part that is proactively recovered).
This is hard or at all impossible to achieve in homogeneous systems’ models [14].

Proactive resilience is a new and more resilient approach to proactive recovery based on
architectural hybridization and wormholes [12]. We argue that the proactive recovery subsystem
should be constructed in order to assure a synchronous and secure behavior, whereas the rest of the
system may even be asynchronous. The Proactive Resilience Model (PRM) proposes to model the
proactive recovery subsystem as an abstract component – the Proactive Recovery Wormhole
(PRW). The PRW may have many instantiations depending on the application proactive recovery
needs.

2. An Application Scenario: State Machine Replication

In a previous work [13], we explain how proactive resilience can be used to build an exhaustion-
safe state machine replication system. We also give the intuition that the redundancy quorum to
tolerate Byzantine faults should have in account the number of simultaneous recoveries triggered
through proactive resilience. More recently, we have found precisely how much extra redundancy is
needed. We present next a brief explanation of our result.

2.1 Why n � 3f + 2k + 1?

Consider that you have a replicated state machine replication system with n replicas, able to tolerate
a maximum of f Byzantine faults, and where rejuvenations occur in groups of at most k replicas. At
any time, the minimum number of replicas assuredly available is n - f - k. So, in any operation,
either intra-replicas (e.g., a consensus execution), or originated from an external participant (e.g., a
client request), a group with n - f - k replicas will be used to execute the operation. Given that some
of these operations may affect the state of the replicated system, one also needs to guarantee that
any two groups of n - f - k replicas intersect in at least f + 1 replicas (i.e., one correct replica).
Therefore, we need to guarantee that 2(n – f - k) – n � f + 1, which can only be satisfied if
n � 3f + 2k + 1.

165

The reasoning above can be seen in practice by analyzing the Byzantine dissemination quorum
system construction [8], which applies to replicated services storing self-verifying data, i.e., data
that only clients can create and to which clients can detect any attempted modification by a faulty
server (e.g., public key distribution system). In a dissemination quorum system, the following
properties are satisfied:

Intersection any two quorums have at least one correct replica in common;

Availability there is always a quorum available with no faulty replicas.

If one designates |Q| as the quorum size, then the above properties originate the following
conditions:

Intersection 2|Q| - n � f + 1;

Availability |Q| � n - f - k.

From these conditions, it results that we need n � 3f + 2k + 1 in order to have a dissemination
quorum system in a environment where at most f replicas may behave arbitrarily, and at most k

replicas may recover simultaneously (and thus become unavailable during certain periods of time).
In the special case when n = 3f + 2k + 1, it follows that |Q| = 2f + k + 1.

3 Future Work

We are in the process of implementing an experimental prototype of a proactive resilient state
machine replication system. The goal is to compare, in practice, the resilience of such a system with
the resilience of similar ones built using different approaches.

Another objective we are pursuing is to research ways of using proactive resilience to mitigate
Denial-of-Service attacks.

References
[1] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous verifiable secret sharing

and proactive cryptosystems. In CCS ’02: Proceedings of the 9th ACM Conference on Computer

and Communications Security, pages 88–97, 2002.

[2] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM

Transactions on Computer Systems, 20(4):398–461, Nov. 2002.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of

the ACM, 43(2):225–267, Mar. 1996.

[4] F. Cristian and C. Fetzer. The timed asynchronous system model. In Proceedings of the 28th IEEE

International Symposium on Fault-Tolerant Computing, pages 140–149, 1998.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[6] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In Proceedings of the 15th Annual International Cryptology Conference

on Advances in Cryptology, pages 339–352. Springer-Verlag, 1995.

[7] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[8] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings of the 29th ACM Symposium

in Theory of Computing, pages 569–578, May 1997.

[9] M. A. Marsh and F. B. Schneider. CODEX: A robust and secure secret distribution system. IEEE

Transactions on Dependable and Secure Computing, 1(1):34–47, January–March 2004.

166

[10] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In
Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing, pages
51–59, 1991.

[11] P. Sousa, N. F. Neves, and P. Veríssimo. How resilient are distributed f fault/intrusion-tolerant
systems? In Proceedings of the Int. Conference on Dependable Systems and Networks, pages 98–
107, June 2005.

[12] P. Sousa, N. F. Neves, and P. Veríssimo. Proactive resilience through architectural hybridization.
DI/FCUL TR 05–8, Department of Informatics, University of Lisbon, May 2005.
http://www.di.fc.ul.pt/tech-reports/05-8.pdf. To appear in Proceedings of the 21st ACM
Symposium on Applied Computing (SAC).

[13] P. Sousa, N. F. Neves, and P. Veríssimo. Resilient state machine replication. In Proceedings of the

11th Pacific Rim International Symposium on Dependable Computing (PRDC), pages 305–309,
Dec. 2005.

[14] P. Veríssimo. Travelling through wormholes: a new look at distributed systems models.
SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability Theory),
37(1, (Whole Number 138)):—, 2006.

[15] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure distributed on-line certification
authority. ACM Transactions on Computer Systems, 20(4):329–368, Nov. 2002.

[16] L. Zhou, F. B. Schneider, and R. V. Renesse. Apss: Proactive secret sharing in asynchronous
systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286, 2005.

167

A Mediator System for Improving Dependability of Web Services

Yuhui Chen

Yuhui.Chen@ncl.ac.uk

School of Computing Science,

University of Newcastle upon Tyne,

United Kingdom

Abstract

This paper presents a novel architectural solution for improving dependability of Web Services (WSs). This solution is based

on a concept of WSs Mediator, which acts as a WSs intermediary implementing fault tolerance mechanisms, multi-routing

strategy and making use of existing service redundancy. The distributed architecture of this system makes it possible to col-

lect, publish and make decisions using runtime dependability metadata specifically representing the end-user’s perspective of

the network and component WSs behaviour, therefore paving the way to achieve dependability-explicit operation of WSs [1].

Introduction

The services-oriented architecture (SOA) and the infrastructure on which SOA systems are employed are inher-

ently unreliable [2]. The existing approaches for improving WSs dependability mainly focus on adopting tradi-

tional fault tolerance mechanisms, such as exception handling and recovery blocks [3], in developing individual

WSs applications. Some proxy-based solutions make use of redundant components and subsystems passively to

improve dependability of integration of a group of component WSs within virtual organizations. However many

researchers [4-8] indicate that the network-related failures have serious impact on the overall dependability of

SOA applications. Our WSs Mediator offers a service-oriented solution for employing fault tolerance techniques

in SOA. It is specifically developed to cope with errors of several major types including failures of the individual

component WSs and abnormal events in the underlying network infrastructure.

1. The WSs Mediator approach

The WSs Mediator is a general architectural solution. There are two main goals in this approach. Firstly, it im-

plements fault tolerance mechanisms to offer off-the-shelf fault tolerance solutions in SOA. It improves the de-

pendability of pre-existing WSs. The developers of new WSs can also utilize the solutions provided by the WSs

Mediator to achieve better dependability of their system at low costs. Secondly the WSs Mediator innovatively

implements dependability-explicit technique to improve the dependability of WSs from the user’s perspective.

Figure 1: The architecture of the WSs Mediator

168

1.1 The architecture of the WSs Mediator

The WSs Mediator system consists of a set of Sub-Mediators constituting together an overlay architecture as

shown in Figure 1. Sub-Mediators are distributed globally on the major Internet backbones. They have identical

functionalities. A Sub-Mediator can work independently to provide services to the users, or it cooperates with

each other to enforce dependability-improving strategies. Each Sub-Mediator has dedicated redundant functional-

ity for improving the overall dependability of the WSs Mediator system.

A Sub-Mediator is an intermediary WS between the users and the ultimate WSs they use. The Sub-Mediator sup-

ports dynamic reconfiguration. It dynamically processes the users’ requests. The behavior of the Sub-Mediator is

controlled by dynamic policies. This architecture leads to flexible and optimized fault tolerant execution of the

service requests.

1.2 Fault-tolerance solutions.

The WSs Mediator implements several fault tolerance techniques to deal with different type of failures. It pro-

vides comprehensive fault tolerance solutions to improve the dependability of WSs. The fault tolerance mecha-

nisms in the WSs Mediator work are implemented as off-the-shelf components. They can be applied independ-

ently or in combinations.

• Exception handling

The WSs Mediaotr implements exception handling mechanism to deal with different type of internal and

external failures. This mechanism is able to detect and analyze the exceptions and execute exception han-

dling procedures accordingly.

• Recovery Blocks.

Recovery blocks is an essential fault tolerance technology adopted in the WSs Mediator system. This

mechanism stores SOAP messages received from users. If failures happened during the processing, the

stored message can be used to re-launch the processing without interrupting the users.

• Multi-routing strategy

The WSs Mediator system implements an optimized message routing strategy to overcome network im-

pact between users and WSs. Unpredictable failures such as random network traffic congestion and de-

lays on an Internet backbone [6][9] may occur at anytime. Transport level protocols do not provide effi-

cient solutions to deal with this type of failures for SOA applications. The multi-routing strategy is a de-

sirable solution to improve dependability of the network between users and WSs. This strategy provides a

solution to overcome the limitations of the transport level protocols [6].

• Employing Service redundancy

The loose coupling nature is one of the advantages of the WSs. In some circumstances, if a WS is not

available, users can always switch to an alternative WS which provides similar or identical services. It is

particularly feasible in specific domains where the WSs have similar or identical API and functionalities.

The WSs Mediator system is an off-the-shelf solution to improve dependability of the pre-existing WSs

from the user’s perspective. It is clear that such WSs will eventually fail. The WSs Mediator implements a

mechanism which makes use of service redundancy to overcome this kind of problems. Several (diverse)

WSs can be used to achieve N-version strategy [10]. If a WS failed to provide reliable services to the us-

ers, alternative WSs can be used.

1.3 Dependability-explicit operation.

The WSs Mediator provides fault tolerance solutions to improve dependability of WSs. However because of the

nature of SOA, in some circumstances, traditional fault tolerance technologies are inadequate to improve the de-

169

pendability of WSs efficiently. The WSs Mediator implements dependability-explicit technique to provide pre-

ventive solutions for improving the dependability of WSs especially from the user’s perspective.

The Sub-Mediators in the WSs Mediator system collect the information reflecting current dependability character-

istics of the available WSs. This is implemented as a runtime dependability daemon for monitoring the WSs and

generating dependability-related metadata. These metadata are recorded in a database in each Sub-Mediator and

used for online services reasoning and dependability-explicit computing [1]. The metadata consist of a range of

values such as failure rates and regular failure types. The main advantage of this metadata collecting approach is

that it provides accurate dependability characteristics of WSs from the WSs users’ perspective by collecting in-

formation reflecting behaviour of the network between the user and WSs [6], therefore it supports fault tolerance

specially tailored for the specific users.

2. Mediator extendibility and flexibility

As an off-the-shelf intermediary system the WSs Mediator system can be easily adjusted to follow future devel-

opment of the WSs standards. Moreover, the flexible design of the WSs Mediator system and its components

makes it easy to accommodate the fast-improving WSs technologies such as UDDI and other ontology-based WSs

discovery technologies.

3. Conclusion

At present there are several commercial systems focusing on dependability of Web Services. However most of

them offer developer-oriented solutions. For instance, the Keynote system [9] uses a globally distributed infra-

structure to help web-based application developers to understand the behaviour of their systems. However the true

user-oriented solutions for improving dependability of WSs are imperatively needed because of the prominent

role of WSs in today’s e-Science and e-Business applications. The WSs Mediator system is a dedicated service-

oriented and user-oriented solution to meet this demand.

The design of the WSs Mediator system is nearly finished. The full implementation will be completed by June

2006. The system will be evaluated in the following steps. Firstly, we will use an appropriate fault-injection tech-

nique to evaluate its behaviour under various network impairments. Secondly, we will apply the system for a

small-scale setting involving a number of WSs employed in the e-science applications.

References

[1] J. Fitzgerald, S. Parastatidis, A. Romanovsky and P. Watson, Dependability-explicit Computing in Service-oriented Architecture. DSN

2004 Supplemental Volume. Florence, Italy, June 2004, pp.34-35.

[2] Managing Exceptions in Web Services Environments, An AmberPoint Whitepaper, AmberPoint, Inc. September 2003.

[3] B. Randell, System Structure for Software Fault Tolerance. IEEE TSE, 1, 1975, pp. 220-232.

[4] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy, Dependability in the Web Services Architecture. In: Architecting Dependable

Systems, 2004, R. de Lemos, C. Gacek, A. Romanovsky, (eds.) LNCS 2677, pp. 90-109.

[5] M. Kalyanakrishnan, R. Iyer, and J. Patel, Reliability of Internet hosts: a case study from the end user’s perspective, Computer Net-

works, 31, 10, 1999, pp. 47–57.

[6] J. Han and J. Frarnam, Impact of Path Diversity on Multi-homed and Overlay Networks, In Proceedings of the DSN-DCCS 2004, Flor-

ence, Italy, June 2004, pp.29-38.

[7] M. Merzbacher and D. Patterson, Measuring end-user availability on the web: Practical experience. In Proceedings of the International

Performance and Dependability Symposium (IPDS), June 2002.

[8] J. Duraes and H. Maderia, Web-server availability from the end-user viewpoint: a comparative study, IEEE/IFIP International Confer-

ence on Dependable Systems and Networks - Dependable Computing and Communications, DSN-DCCS 2004, Florence, Italy, June 2004

[9] The Keynote Method, Keynote System, Inc, http://www.keynote.com/keynote_method/keynote_method_main_tpl.html, 2006

[10] A. Avizienis. The N-version Approach to Fault-Tolerant Software", IEEE TSE, 11, 1985, pp. 1491-1501.

170

171

