
Sept. 2007 Porquerolles 1

Checking Models,
Proving Programs,

and Testing systems

Marie-Claude Gaudel

LRI, Université de Paris-Sud & CNRS

Sept. 2007 Porquerolles 2

Outline of the talk

• Some hopefully “clear” definitions
– Models, Programs, Systems, Properties
– Model-checking, Program proving, Testing

• Brief state-of-the-art

• Not so clear variants of the definitions above
– Run-time verification, Model-checking programs,

Coverage in model-checking, Bounded model-
checking, Model-based testing, Program checking,
Proof approximation…

• Along the talk: some examples of cross
fertilisation

175

Sept. 2007 Porquerolles 3

Some “clear” definitions

• Models

• Programs

• Systems

• Properties

• Model-checking

• Program proving

• Testing

Sept. 2007 Porquerolles 4

Models:
an heavily overloaded* term

• Here models – as they are used for model-
checking – are just annotated graphs

– A finite set of states, S
– Some initial state, s0

– A transition relation between states, T!S"S
– A finite set of atomic propositions, AP

– A labelling function L : S# P(AP)

• Richer similar notions:
– Labelled Transition systems, LTS
– Finite State machines, FSM
– State charts, …

* For a physicist a “model”

is a differential equation;

For a biologist, it may be

… mice or frogs

176

Sept. 2007 Porquerolles 5

fullempty

An example

s0

AP = {empty, full}
Some LTL formula that are valid for this model:
empty $ (X ¬empty)
full $ (X ¬full)
(X is for neXt)

Sept. 2007 Porquerolles 6

What are models good for?

• System description and
design:
– The future system must

conform to the model(s)
– The model(s) may be used

as a starting point for
(automatic) development

• System analysis
– Observing the existing

system, one extracts a
model and studies it

• …
• Essential role in V and V

and quality assurance

Model(s)

System

development

System
Model

analysis

177

Sept. 2007 Porquerolles 7

Some “clear” definitions

• Models

• Programs

• Systems

• Properties

• Model-checking

• Program proving

• Testing

Sept. 2007 Porquerolles 8

Programs

• Everybody knows what it is !

• Here:
– A program is a piece of text in a

(hopefully) well defined language

– There is a syntax, some semantics,
and compilers

• “A program is a very detailed
solution to a much more
abstract problem” [Ball, 2005]

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

178

Sept. 2007 Porquerolles 9

Why are programs useful?

• They can be compiled and embedded into
some system

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

input

output

Sept. 2007 Porquerolles 10

Interlude

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

CORRECT!

179

Sept. 2007 Porquerolles 11

Interlude (cont)

• A program text, or a specification text, is
not the system

 “A map is not the territory”

Sept. 2007 Porquerolles 12

Some “clear” definitions

• Models

• Programs

• Systems

• Properties

• Model-checking

• Proof

• Testing

180

Sept. 2007 Porquerolles 13

Systems…

• A system is a dynamic
entity, embedded in the
physical world

• It is observable via some
limited
interface/procedure

• It is not always
controllable

• Quite different from a
piece of text (formula,
program) or a diagram input

output

Sept. 2007 Porquerolles 14

Systems are the actual objects
of interest

• How to ensure that a system satisfies certain
properties?

• Properties?
– Texts in natural languages…

• “Calls to lock and unlock must alternate.”

– Formulas in a given specification logic
• (locked $ X unlocked) % (unlocked $ X locked)

– Sets of mandatory or forbidden behaviours
lock

lock

unlock

unlock

181

Sept. 2007 Porquerolles 15

The Classical Process…

Model(s)

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

System

Program

Properties

Properties Observable
Properties

input

output

Sept. 2007 Porquerolles 16

Some “clear” definitions

• Models

• Programs

• Systems

• Properties

• Model-checking

• Program proving

• Testing

182

Sept. 2007 Porquerolles 17

Properties…,
Specification Languages…

• Logic-based specification languages
– VDM, Z, CASL, HOL, B, JML, …
– Temporal Logics: LTL, CTL, …

• Behaviour-based specification languages
– Lotos, Promela, CSP, State charts, Petri Nets, Timed

automata…

• Usages:
– Global requirement on the system as a whole, or of

some subsystems
– Assertions in programs and models: pre-conditions,

post-conditions, invariants

Sept. 2007 Porquerolles 18

Example: some JML invariant

public /*@ pure @*/ class ModelSet{
/*@ public invariant (\forall Object e1, e2;

@ this.add(e1).has(e1)

@ && this.add(e1).add(e2).equals(this.add(e2).add(e1))

@ && this.add(e1).add(e1).equals(this.add(e1))

@ && (this.equals(new ModelSet()) ==> !this.has(e1)))

@*/

public ModelSet() {…}

public boolean has(Object o) {…}

public ModelSet add(Object o) {…}

public boolean equals(/*@ nullable @*/ Object o) {…}

} © Leavens, Leino, Müller, FAC, 2007

183

Sept. 2007 Porquerolles 19

Example: JML post-conditions

public /*@ pure @*/ interface UModelSet {
public boolean has(Object o) ;

/*@ ensures \result.has(o) &&

 @ (\forall Object e1; e1 != o ==> this.has(e1) == \result.has(e1)) ;

@*/
public UModelSet add(Object o) ;

/*@ ensures (\forall Object e1; ! \result.has(e1)) ;

public UModelSet emptySet() ;

}

© Leavens, Leino, Müller, FAC, 2007

Sorry: in JML the post-conditions are

above the concerned method !

Sept. 2007 Porquerolles 20

Example of temporal Logic :
quick introduction to LTL

• Syntax: LTL formulas are built from a set AP of
atomic propositions and are closed under Boolean
connectives and temporal connectives

– X (next)
– U (until)
– G (invariant)
– F (future)

• Semantics
– Given a finite model M
– M satisfies a LTL formula & if all traces of M satisfy !

&

& & '

 &
 & & & & &

184

Sept. 2007 Porquerolles 21

LTL (cont.)
• Example

– G(¬request " (request U grant))

– “whenever a request is made it holds continuously until
it is eventually granted”

• Interest of LTL
– Checking whether a finite model M satisfies a LTL

formula & can be done
– in time
– in space

• Cons: it’s often difficult to express realistic
properties => CTL (quantifications on traces) &
others, but … tricky anyway
!

O(M .2
O(")

)

!

O((" + logM)2)

Linear in the size of the model

Sept. 2007 Porquerolles 22

Some “clear” definitions

• Models

• Programs

• Systems

• Properties

• Model-checking
– Concise state-of-the-art

• Program proving

• Testing

185

Sept. 2007 Porquerolles 23

Model-Checking

Model

&, Temporal Formula

Model

Checker

valid

Counter
example

Algorithmic approach: exhaustive exploration of the model
A well-known example: SPIN, where models are described in
Promela and checked against LTL formulas
Big issue: size of the model (esp. due to concurrency). Huge
models are attainable… but it is not enough

Sept. 2007 Porquerolles 24

Model-Checking

• The state-of-the art in a few words : struggle
against size, …and infinity

• Symbolic model-checking: BDD (set of states)
and fix-point operators
– SMV: hundreds of boolean variables (CTL), more than

1020 states, 10 years ago

• SAT-based model-checking and bounded model-
checking

• Abstraction, and CEGAR « counter example-
guided abstraction refinement »

• Partial-order reduction (in case of concurrency)

186

Sept. 2007 Porquerolles 25

Abstraction of a model

M

Abs(M)

•• •
•

Behaviour preservation:
<s, s’> # TM iff <Abs(s), Abs(s’)> # TAbs(M)

Abstraction makes it possible to
• dramatically reduce big models
• specify and analyse infinite models

Sept. 2007 Porquerolles 26

Why infinite models?
• Underlying models of several specification

notations:
– Lotos, SDL, Promela, CSP with value passing

mechanisms, UML statecharts…

• Underlying models of programs

• Notation for infinite models:
– State identifiers are decorated with typed variables

• they denote classes of states, possibly infinite

– Transitions between such classes of states are labelled
by events, guards, and actions

• where variables may occur
• Where actions may modify variables values

– They denote classes of transitions, possibly infinite

187

Sept. 2007 Porquerolles 27

An example: buffer with priority
a finite description

?M/Q.add(M)

!Q.get()/Q.remove()

?ready [¬Q.isEmpty()]/_

_/Q.init()

Buffer(Q) ClientReady(Q)

M: Message, couples of text and priority

Q: Queue of Messages, with init, add, remove and get operations

NB: some transitions are omitted…

State identifier

variable

guard

action

Sept. 2007 Porquerolles 28

A very small part of the
underlying model

!(1,HELLO)
?ready

?(2,other)

?(1,HELLO)

Buffer

(emptyq)

Buffer

(add ((1,HELLO),emptyq))

ClientReady

(add ((1,HELLO),emptyq))

Big issue: reachability of states and transitions…it is not decidable "

The finite description is an over- approximation of the infinite model

188

Sept. 2007 Porquerolles 29

Unfeasible traces

• It is a classical problem in structural testing

• C1 and C2 may be incompatible

– more precisely: C1after B1 $ C2after B1.B2 may be
unsatisfiable => B1 C1 B2 C2 B4 B6 is not feasible

B1 C1

B2

B3

C2 B6

B5

B4
true true

false false

Sept. 2007 Porquerolles 30

A few model-checkers

• SPIN (Promela, LTL)

• NuSMV 2 (CTL) combines BDD-based
model checking with SAT-based model
checking.

• FDR (CSP, refinements)

• Timed automata: UPPAAL, KRONOS

• Stochastic models: PRISM, APMC

189

Sept. 2007 Porquerolles 31

Some “clear” definitions

• Models
• Programs
• Systems
• Properties

• Model-checking
• Program Proving

– On-going progresses
– Static Analysis

• Testing

Sept. 2007 Porquerolles 32

Program Proving

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

Program

Logical
Assertions

+

Seen as a formula

(for instance,

good old

{Pre} Prog {Post})
Proof

envt

Static

Analyser SAT

solver

Theorem

Prover

Libraries

axiomatisation

190

Sept. 2007 Porquerolles 33

What is a proof?

Formula &

Theory:

Axioms

Inference rules

Proof Engine +

Strategies
Theorem: yes/no/?

Syntactic process: transformation of !, via the inference

rules, into some axioms

Not automated for powerful theories (f. i. inductive ones)

Sept. 2007 Porquerolles 34

Program Proving

• Significant and continuous progresses
– Great theorem provers: Coq, Simplify,

HOL/Isabelle, PVS…
– Powerful static analysis techniques

• Tendency
– Environments specialised for given couples

<programming language, specification/assertion
language> : Java/JML, C#/Spec#

• The assertion language is tailored for the programming
language

– Libraries of abstract modelling types (collections, etc)
– Big industrial investments : HP, Microsoft Research, …

191

Sept. 2007 Porquerolles 35

A personal remark

Good old ideas (Hoare’s logics, Dijkstra’s wp calculus)

are still basic.

But now, in addition…

Sept. 2007 Porquerolles 36

Progresses and challenges

• Side-effects and aliasing handled by various program
logics
– Reasoning about heap structures and aliasing !, but…

pb with invariants of complex object structures "
• Reasoning on breaking out of loops, or catching exceptions

solved by “logics for abrupt termination” !
• Dynamic method binding and inheritance partially handled

by “behavioural subtyping” #
• Gap between some abstract modelling types and concrete

types (quantifications, _.equals() versus =) "
• Non-termination (loop variants, model-checkers) handled

in various cases #
[Leavens, Leino, Muller, FAC 2007]

192

Sept. 2007 Porquerolles 37

Advances in static analysis

• Static analysis provides ways to obtain
information about possible executions of a
program without running it.

• It is an approximation
– indecidability of feasability => a super-set of the actual

executions is considered => possibility of false alarms
or inconclusive answers

• Main approaches:
– Abstract interpretation [Cousot 77] (f.i. the ASTRÉE

tool)
– …Model-checking (sometimes called Software model-

checking, see later)

Sept. 2007 Porquerolles 38

The static analyser ASTRÉE

• Structured C programs, without dynamic memory
allocation and recursion, with no side-effect

• Check that some kinds of “run-time errors” cannot
occur during any execution in any environment
– Division by zero, Out of bound array indexing
– Arithmetic overflow
– User-defined assertions

• “Domain-aware” (logic and functional properties
of control/command theory)
– “Miracles” on the considered family of programs and

properties

193

Sept. 2007 Porquerolles 39

Recommended reading on
program proof and static analysis

• Verified Software: Theories, Tools,

Experiments

• Conference in Zurich, fall 2005

• Under the auspices of Tony Hoare’s grand
challenge: « Verifying Compiler »

• http://vstte.ethz.ch

Sept. 2007 Porquerolles 40

Some “clear” definitions

• Models
• Programs
• Systems
• Properties

• Model-checking
• Program Proving
• Testing

– Tendencies, progresses

194

Sept. 2007 Porquerolles 41

Testing

Selected
test input

• The actual system is executed for a
finite set of selected inputs
– NB: selected test sequences for

reactive systems
• These executions are observed, and a

decision is made on their
conformance w. r. t. some
specification

• Issues :
– Selection
– Oracle
– Control, non-determinism
– Assessment of the result of a test

campaign

Ouput,
observation

Oracle

failure/
correct

Sept. 2007 Porquerolles 42

Selection
• Infinite input domain # finite test set, likely to lead to as

many failures as possible
• The selection process can be based on:

– Some characteristics of the input domain
– The structure of the system or of the program
– Some specification/model of the system, and or its environment
– Test purposes

• Coverage criteria of … the input domain, the structure of the
system or of the program, the specification or the model are very
popular

• Actually, the general idea is
– Infinite input domain # finite number of test cases (input sub-

domains) that correspond to uniform behaviours w. r. t. failures
– Uniformity hypothesis, regularity hypotheses

195

Sept. 2007 Porquerolles 43

More on Selection Hypotheses

• They formalise Common Test Strategies
– Uniformity hypotheses: based on some partition of the input

domain. “passing one test in each uniformity sub-domain is
sufficient”

– Regularity hypotheses: based on some size function on the tests.
“If all the tests of size less than or equal to a given limit are
passed, then it is true for all the Input Domain”

• Possibility to derive them from
– Static analysis of the program, or symbolic evaluation (and to

prove them using program proving)
– Analysis of some specification/model, and to prove/check them

• The notion of uniformity sub-domain is similar to
abstraction, but it is not clear that the same abstractions
must be used for testing and model-checking

Sept. 2007 Porquerolles 44

 From test cases to test inputs

• Back to good old structural testing

• The test case corresponding to executions of path B1 C1
B3 C2 B4 B6 is the path predicate ¬C1after B1 $ C2after B1.B2

– This constraint must be solved to get some test input
– NB: may be unsatisfiable

B1 C1

B2

B3

C2 B6

B5

B4
true true

false false

196

Sept. 2007 Porquerolles 45

Constraint solvers
• Essential tools for test generation (and theorem

proving)
• Better and better systems for

– SAT-solving
– Finite domains (f. i. boolean constraints)
– Linear arithmetics
– Specific domains (f. i. finite sets)

• In more general cases improvements due to
– Randomisation of the search of a solution
– Approximation (± abstract interpretation)

• Not yet powerful enough for the needs of realistic
system testing…

Sept. 2007 Porquerolles 46

Random Testing

• These methods can be classified into three
categories :

• those based on the input domain
– Adaptive random testing
– Stochastic optimisation (simulated annealing, genetic

algorithms)

• those based on the environment
• and those based on some knowledge of the

behaviour of the IUT
– Random walks
– Coverage-biased random selection

197

Sept. 2007 Porquerolles 47

A few words on adaptive
random testing

• Failure-causing inputs tend to cluster together
following some patterns (see naive examples below)

• These patterns are used to define probability
distributions on the input domain

– Statically (previous knowledge on the type of system)
or dynamically (± random walks, stochastic
optimisation, learning)

…

Sept. 2007 Porquerolles 48

A few words on coverage-biased
random selection

• Old classical idea for simulation and testing: random walks

• A random walk in the state space of a model (a control
graph, etc) is:

a sequence of states s0, s1, …, sn such that si is chosen uniformly at
random among the successors of the state si-1,

• It is easy to implement and it only requires local
knowledge of the graph.

• Numerous applications in
– Testing (protocols), simulation
– Model-checking (recent works)

198

Sept. 2007 Porquerolles 49

Drawback of classical
random walks

•

•

•

•

•

•

•
•

•

•

•

•

a

b

c

d

e

f

Classical random walks, length 3:

Pr(a; c; d) = 0.5 % 0.25 % 0.25 = 0.03125

Pr(b; e; f) = 0.5

Uniform random sampling of traces, length 3:

Pr(a; c; d) = Pr(b; e; f) = 0.1

The resulting coverage is
dependent on the topology…

Sept. 2007 Porquerolles 50

Uniform generation of bounded
paths in a graph

• Counting [Flajolet et al.]: Given any vertex v, let lv(k) be the
number of paths of length k that start from v

– we are on vertex v with m successors v1, v2, . . . , vm

– condition for path uniformity: choose vi with probability lvi (k-1)/lv(k)

• Application to various criteria based on paths
• Generalisation to node coverage, branch coverage
• Assessment of the quality of the coverage !
• Application to C programs (AuGuSTe) and to models
• The RASTA group, LRI, [ISSRE 2004], [Random Testing

Workshop 2006], [Random Testing Workshop 2007]

199

Sept. 2007 Porquerolles 51

Related work

• NB: in any case, constraint solving is required
– Open issue: uniform constraint solving (work in

progress : [Gotlieb, IRISA, 2006])

• Some similar tools
– PathCrawler, [Nicky Williams, CEA]
– DART, [Godefroid & al., PLDI 2005], linear

constraints
– In both cases “dynamic” test generation
– Only considered criteria: all paths ! given length, no

other coverage criteria

Sept. 2007 Porquerolles 52

You are all invited!

Second International Workshop on

RANDOM TESTING (RT 2007)

co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering

(ASE 2007)
Atlanta, Georgia, USA, November 6, 2007

http://www.mathematik.uni-ulm.de/sai/mayer/rt07/
Ask for the program!

200

Sept. 2007 Porquerolles 53

Outline of the talk

• Some “clear” definitions
– Models, Programs, Systems, Properties
– Model-checking, Proof, Testing

• Not so clear variants of the definitions above
– Run-time verification, Model-checking programs,

Coverage in model-checking, Bounded model-
checking, Model-based testing,…

• Along the talk: some examples of cross
fertilisation

Sept. 2007 Porquerolles 54

Run-time verification, Model-checking programs,
Coverage in model-checking, Bounded model-checking,
Model-based testing,…

? ? ?

Zoom in on
• What people call Software Model Checking
• What people call Model Based Testing
• What is Test Generation using Model-checking

201

Sept. 2007 Porquerolles 55

Software model-checking

Checkable
Model

{i=0 ; read(x);

repeat {

i++ ;

perd(x, i); }

until term(i,x) ;

…

Program

Model

Checker

valid

Counter
exampleProperty

This is an overapproximation

Sept. 2007 Porquerolles 56

More precisely… CEGAR
« counter-examples guided abstraction refinement »

Code

Property

Static

analyser

Model

Checker

valid

Counter
example
wrt Mi

Counter example

analysis

Mi

infeasible
true counter

example

(over-

approximated

model)

Exclude infeasible
paths by adding
more predicates

i & 0
i & i+1

202

Sept. 2007 Porquerolles 57

An example: SLAM/SDV

• Specific to Windows device drivers
• Reverse engineers a Boolean program from the C code,

that represents how the code uses the driver API
• SLAM uses symbolic model-checking (SDV) and

abstraction refinement to check that the driver properly
uses the driver API

• SDV includes some important domain expertise: a set of
API usage rules

• Tailored for a certain class of errors
• Up to 7000 lines C drivers, successful

[Ball et al., Microsoft research]

Sept. 2007 Porquerolles 58

Another example: VeriSoft

• Deals directly with concurrent systems written in
C or C++

• Complexity of states => “state-less” search, based
on transition sequences

• Partial-Order reduction => reduction of the
number of paths, “selective” DFS search and no
explicit construction of the model

• Search for deadlocks, assertion violations,
bounded divergence and livelock

• Dynamic observation of the concurrent system

[Godefroid et al., Lucent Technologies]

203

Sept. 2007 Porquerolles 59

What is VeriSoft ?

VeriSoft scheduler

System
processes
with
assertions

• automatic state-space exploration mode
• or interactive simulation mode
• based on

• model-checking algorithms
• dynamic analysis of independence of transitions

Rather a scheduler/simulator than a model-checker

Sept. 2007 Porquerolles 60

More on VeriSoft
• Dynamic pruning

– At each state reached during the search, VeriSoft
computes a subset of the enabled transitions and ignores
the other ones.

– However, all the deadlocks are visited, and if there exists
a state where an assertion is violated, the search will visit
a state where the same assertion is violated

– Limitation of this result to acyclic models… but
successful experiments with cyclic models and bounded
DFS

• Successful analysis of several software products
developed in Lucent Technologies
– Example: CDMA cell-site processing library, 100 KLOC

204

Sept. 2007 Porquerolles 61

When is software
model-checking effective?

SoftwareHardware

Embedded
software

Device drivers

Cache
coherence
protocols

Bus controllers

Control-
intensive
systems$

Verifying compiler

Financial software

Digital signal
processors

Floating point units

Graphical processors

Data-intensive
systems%

[Clarke et al. 2005]

Sept. 2007 Porquerolles 62

Run-time verification, Model-checking programs,
Coverage in model-checking, Bounded model-checking,
Model-based testing,…

? ? ?

Zoom in on
• What people call Software Model Checking
• What people call Model Based Testing
• What is Test Generation using Model-checking

205

Sept. 2007 Porquerolles 63

Model-based testing

• Heavily overloaded term
– There is a MBT workshop associated with ETAPS, but…

• Almost everything is considered as a model (may be not wrong !)

• Models considered here:
– Annotated graphs as in slide 4
– Finite State Machines (FSM), possibly extended (EFSM)
– Labelled Transition System (LTS), possibly with distinction

between inputs and outputs
– Back to [Chow 78] for FSM,

• recommended reading : Lee and Yannakakis survey [1996]

– and [Brinksma 88] for LTS, and then many others

Sept. 2007 Porquerolles 64

Back in history: testability
hypothesis

• System under test
– unknown, but…

• Hypothesis:
• the System Under Test behaves like some (unknown) FSM

with the same number of states as the description

– In other words, in the SUT, whatever the execution path leading to
some state s, the execution of transition s –x:y-> s’ has the same
effect (same output + same change of state)

FSM

SUT

output

input

equivalence?

206

Sept. 2007 Porquerolles 65

Back in history: control and
observation

• A popular test strategy: transition coverage
s –x:y-> s’ is a transition. In state s, input x must produce output y

and move to state s’

• Questions
– control: how to put the System Under Test into a state equivalent

to s?
• solution 1: reliable(??) reset, and then adequate input sequence
• solution 2: “homing sequence”, and then adequate input sequence

– observation: how to check that after receiving x and issuing y, the
SUT is in a state equivalent to s’?

• « separating family » : collection {Zi}i=1,..,n of sets of input sequences
whose output sequences make it possible to distinguish si from any
other state

Sept. 2007 Porquerolles 66

One of the tests for
s -x/y-> s’

homing sequence

h(I* => answ (O*:

then the SUT state

should be equivalent

to ss.

h/answ

ss

w/)*(ss,w)

s

w (I*: in the formal

description, w leads

from ss to s.

preamble

x/y
?

transition

execution

z/)*(s’, z)

z belongs to the

separating set of s’

observation

?

207

Sept. 2007 Porquerolles 67

A strong result
• Checking sequence:

– covers every transition and its separating set; distinguishes the
description FSM from any other FSM with the same number of
states

• Finite, but may be exponential…
– in length, construction

• Exhaustivity
– transition coverage is ensured

• Control
– homing sequence, or reliable reset

• Observation
– distinguishing sets, or variants (plenty of them!)

Sept. 2007 Porquerolles 68

The LTS approach

• Transitions are labelled by
actions

• Concurrent composition
and synchronisations are
the key issues

• Conformance relations are
no more equivalence, but
various testing preorders

• Strong results on
derivation of exhaustive
test sets and selection

• On-line or off-line
derivation methods

LTS

SUT

output

input

conformance?

208

Sept. 2007 Porquerolles 69

Run-time verification, Model-checking programs,
Coverage in model-checking, Bounded model-checking,
Model-based testing,…

? ? ?

Zoom in on
• What people call Software Model Checking
• What people call Model Based Testing
• What is Test Generation using Model-checking

Sept. 2007 Porquerolles 70

Test generation using model-
checking

• Exploits the fact that model-checkers may yield
counter-examples
– Given &, a required property of the SUT
– Given a model M of the SUT
– Model-check M for ¬ &

• The model-checker will reject ¬ & and produce a
counter-example, i.e. a trace that satisfies &, i.e. a
test sequence for &
– Popular, most model-checkers have been experienced

for test generation
– Nice, but…

209

Sept. 2007 Porquerolles 71

New issues, …and good old ones

• & must be a formula in some temporal logic (not
always convenient)

• An example:
– &: AG(¬request " (request U grant))

– ¬ &: EF(request $ ¬(request U grant))

– One counter-example is not enough (because of the
universal quantification) => exhaustivity and coverage
issues

• The finite model is an over-approximation of the
system
– Feasability, constraint solvers…

Sept. 2007 Porquerolles 72

Conclusion (1)

• Significant advances in the three domains
– Each one makes use of the other ones in some

occasions
– Very good specialised tools

• A politically correct and frequent comment:
– All these methods are now used together, and this

convergence will lead to great results
– Model-checking is very powerful and solves most

problems in static analysis and model based testing and
more generally in verification

210

Sept. 2007 Porquerolles 73

Conclusions (2)
• We are not so far…
• Many tricky scientific issues, among many others:

– Standard temporal logics can specify only regular
properties; correctness of procedures w. r. t. pre- and
post conditions are not regular [Alur 2005]…
Integration of model-checking and program proving is
not as clear as it is claimed by some authors.

– Constraint solving remains a bottle-neck: most success
stories on large programs static analysis or testing are
either limited to linear arithmetic, or not fully
automated

– Dealing with the “abstraction gap” in proving
(reasoning with equality) and testing (oracle) is not
solved in general

Sept. 2007 Porquerolles 74

Final conclusion

It is not because a

problem is undecidable

that one must not attack it.

Be cautious about miracles

211

