Checking Models,
Proving Programs,
and Testing systems

Marie-Claude Gaudel
LRI, Université de Paris-Sud & CNRS

Sept. 2007 Porquerolles 1

Outline of the talk

» Some hopefully “clear” definitions
— Models, Programs, Systems, Properties
— Model-checking, Program proving, Testing
* Brief state-of-the-art
* Not so clear variants of the definitions above

— Run-time verification, Model-checking programs,
Coverage in model-checking, Bounded model-
checking, Model-based testing, Program checking,
Proof approximation...

» Along the talk: some examples of cross
fertilisation

Sept. 2007 Porquerolles 2

175

%

Some “clear” definitions

Models

Programs

Systems

Properties

Model-checking
Program proving

Testing

Sept. 2007 Porquerolles 3

Models:

an heavily overloaded™® term

» Here models — as they are used for model-
checking — are just annotated graphs
— A finite set of states, S
— Some initial state, s,
— A transition relation between states, TCSxS

— A finite set of atomic propositions, AP
— A labelling function L : S— P(AP)

e Richer similar notions:

— Labelled Transition systems, LTS % For a physicista “model”
— Finite State machines, FSM is a differential equation;

’ For a biologist, it may be
— State charts, mice or fiogs

Sept. 2007 Porquerolles 4

176

Sy J

An example

AP = {empty, full}

Some LTL formula that are valid for this model:

empty = (X —empty)
full = (X —full)
(X 1s for neXt)

Sept. 2007

Porquerolles

System description and
design:

— The future system must

conform to the model(s)

— The model(s) may be used
as a starting point for
(automatic) development

System analysis

— Observing the existing
system, one extracts a
model and studies it

Essential role in V and V

and quality assurance
Sept. 2007

Model(s)

System

Jevelopmesr

N
S
€ 7 ;
“1/“¢

o ¥
’*wff\ :

- o
‘e~

Porquerolles

What are models good for?

System

3 .
o :
>

=g

177

* Programs

Sept. 2007

Some “clear” definitions

Models

Systems
Properties

Model-checking
Program proving
Testing

Porquerolles

%

Programs
« Everybody knows what it is © -
* Here: {i=0 ; read(x);
— A program is a piece of text in a repeat {
(hopefully) well defined language i+
— There is a syntax, some semantics, perd(x, i); }

* “A program is a very detailed Cj
. J
solution to a much more

and compilers))
P until term(i,x) ;

abstract problem” [Ball, 2005]

Sept. 2007

Porquerolles

178

Why are programs useful?

* They can be compiled and embedded into
some system

%

E) -
{i=0 ; read(x); - > 3
repeat { - LU,
it I —— < (,2 \
perd(x, 1); } o ~ :
until term(i,x) ; X *®
PO
@) output
Sept. 2007 Porquerolles input 9
Interlude
o)
{i=0 ; read(x);
repeat {
1++ ;
perd(x, 1); }
until term(i,x) ;
& *l CORRECT!

Sept. 2007 Porquerolles

10

179

not the system

Sept. 2007

Interlude (cont)

“A map is not the territory”

-,

» A program text, or a specification text, is

Porquerolles

%

11

* Models

* Programs
e Systems

* Properties

* Model-checking
* Proof
» Testing

Sept. 2007

Some “clear” definitions

Porquerolles

x4

12

180

Systems...

* A system is a dynamic
entity, embedded in the

physical world

It is observable via some ' “
limited < N
interface/procedure o'

* Itis not always

controllable
 Quite different from a output .'
piece of text (formula,

program) or a diagram

Sept. 2007 Porquerolles

Systems are the actual objects @
of interest

« How to ensure that a system satisfies certain
properties?
» Properties?
— Texts in natural languages. ..

e “Calls to lock and unlock must alternate.”

— Formulas 1n a given specification logic
* (locked = X unlocked) A (unlocked = X locked)

— Sets of mandatory or forbidden behaviours

oN

unlock ock
Sept. 2007 Porquerolles 14

181

The Classical Process...

Model(s)
Program
| (@)
{i=0 ; read(x);
repeat {
i++; System
perd(x, 1); }
until term(i,x) ; P ‘s
Properties @’ \A ” 3:"‘*?*
J J w" B '\ N
S o a :
S o
Properties Observable —
Properties _m
Sept. 2007 Porquerolles ianIt 15
194 9 cql
Some ‘“‘clear” definitions
* Models
e Programs
« Systems
* Properties
* Model-checking
* Program proving
» Testing
Sept. 2007 Porquerolles 16

182

%

Properties...,
Specification Languages...

» Logic-based specification languages
— VDM, Z, CASL, HOL, B, JML, ...
— Temporal Logics: LTL, CTL, ...
* Behaviour-based specification languages
— Lotos, Promela, CSP, State charts, Petri Nets, Timed
automata...
» Usages:
— Global requirement on the system as a whole, or of
some subsystems
— Assertions in programs and models: pre-conditions,
post-conditions, invariants

Sept. 2007 Porquerolles 17

x4

Example: some JML invariant

public /*@ pure @*/ class ModelSet {

/*@ public invariant (\forall Object el, e&;
@ this.add(el).has(el)
@ && this.add(el).add(eR).equals(this.add(e?).add(el))
@ && this.add(el).add(el).equals(this.add(el))
@ && (this.equals(new ModelSet()) ==> Ithis.has(el)))
@*/

public ModelSet() {...}

public boolean has(Object o) {...}

public ModelSet add(Object o) {...}

public boolean equals(/*@ nullable @*/ Object o) {...}

© Leavens, Leino, Miiller, FAC, 2007
Sept. 2007 Porquerolles 18

183

x4

Example: IML post-conditions

public /*@ pure @*/ interface UModelSet {
public boolean has(Object 0) ;

/*@ ensures \result.has(o) &&

@ (\forall Object el; el != 0 ==> this.has(el) == \result.has(el)) ;
@*/
public UModelSet add(Object o) ;

/*@ ensures (\forall Object el; ! \result.has(el)) ;
public UModelSet emptySet() ;

} Sorry: in JML the post-conditions are
above the concerned method &

© Leavens, Leino, Miller, FAC, 2007

Sept. 2007 Porquerolles 19

Example of temporal Logic : @
quick introduction to LTL

» Syntax: LTL formulas are built from a set AP of
atomic propositions and are closed under Boolean
connectives and temporal connectives

- X ex) *O—(@—O—O—O

— U (unti) () (@) (P) C) C)

— G (invariant) @ @ @ @ @
— F (future) ’ ’ ’ @ ‘

 Semantics

— Given a finite model M
— M satisfies a LTL formula o if all traces of M satisfy @

Sept. 2007 Porquerolles 20

184

%

— “whenever a request is made it holds continuously until
it is eventually granted”

e Interest of LTL

— Checking whether a finite model M satisfies a LTL
formula ¢ can be done

LTL (cont.)

« Example
— G(—request v (request U grant))

— intime O M|.20(“0‘)) Linear in the size of the model

— in space O((jg|+log|M)?*)
» Cons: it’s often difficult to express realistic

properties => CTL (quantifications on traces) &
others, but ... tricky anyway

Sept. 2007 Porquerolles 21

x4

Some “clear” definitions

Models
Programs

Systems

Properties

Model-checking

— Concise state-of-the-art

Program proving

Testing

Sept. 2007 Porquerolles 22

185

%

Model-Checking

Vodel % \ valid
0de Model
Counter

Checker
¢, Temporal Formula—— example

Algorithmic approach: exhaustive exploration of the model
A well-known example: SPIN, where models are described in
Promela and checked against LTL formulas

Big issue: size of the model (esp. due to concurrency). Huge

models are attainable... but it is not enough
Sept. 2007 Porquerolles 23

x4

Model-Checking

The state-of-the art in a few words : struggle
against size, ...and infinity

Symbolic model-checking: BDD (set of states)
and fix-point operators

— SMV: hundreds of boolean variables (CTL), more than
1020 states, 10 years ago

SAT-based model-checking and bounded model-
checking

Abstraction, and CEGAR « counter example-
guided abstraction refinement »

Partial-order reduction (in case of concurrency)

Sept. 2007 Porquerolles 24

186

%

Abstraction of a model

Abs(M) /7./ ’f‘\ °

Y = ——

Behaviour preservation:
<s, 8> & Ty iff <Abs(s), Abs(s’)> € Tppsm

\

Abstraction makes it possible to
e dramatically reduce big models
» specify and analyse infinite models

Sept. 2007 Porquerolles 25

x4

Why infinite models?

» Underlying models of several specification
notations:

— Lotos, SDL, Promela, CSP with value passing
mechanisms, UML statecharts...

* Underlying models of programs

» Notation for infinite models:

— State identifiers are decorated with typed variables
* they denote classes of states, possibly infinite
— Transitions between such classes of states are labelled
by events, guards, and actions
» where variables may occur
* Where actions may modify variables values

— They denote classes of transitions, possibly infinite
Sept. 2007 Porquerolles 26

187

An example: buffer with priority%
a finite description

NB: some transitions are omitted...

guard
IM/Q.add(M) ready [—IQ.iSEilpty()]/_ variable
| Buffer(Q) | ClientReady(Q)
_/Q.1nit() N /
1Q.get()/Q.remove() State identifier
action

M: Message, couples of text and priority
Q: Queue of Messages, with init, add, remove and get operations

Sept. 2007 Porquerolles 27

E A very small part of the @

underlying model
-

//“ 7(2,other)
ClientReady
(add ((1,HELLO),emptyq))

2(1,HELLO)
Big issue: reachability of states and transitions...it is not decidable ®
The finite description is an over- approximation of the infinite model

Buffer
(emptyq)

I(1,HELLO)

Sept. 2007 Porquerolles 28

188

Unfteasible traces

« It is a classical problem in structural testing

true B2 true B4
—— Bl :|A B6 |—
B3 B5

false false

* CI and C2 may be incompatible

— more precisely: C1 4, g; A C2,4,, p; 5, Mmay be
unsatisfiable => B1 C1 B2 C2 B4 B6 is not feasible

Sept. 2007 Porquerolles 29

x4

A few model-checkers

e SPIN (Promela, LTL)

« NuSMV 2 (CTL) combines BDD-based
model checking with SAT-based model
checking.

* FDR (CSP, refinements)
o Timed automata: UPPAAL, KRONOS
o Stochastic models: PRISM, APMC

Sept. 2007 Porquerolles 30

189

* Models

e Programs
* Systems

» Properties

* Model-checking

* Program Proving
— On-going progresses
— Static Analysis

« Testing

Sept. 2007

Some “clear” definitions

Porquerolles

%

31

Program Proving

4 Program N Theorem Libraries
>) Prover | laxiomatisation
{i=0 ; read(x);
repeat {
i++;
perd(x. i): } Seen as a formula
until term(i,x) ; (for instance, -
a” igood old " Proof
+ {Pre} Prog {Post}) envt
Logical
Assertions /
SAT
solver

Sept. 2007

Porquerolles

x4

32

190

%

What 1s a proof?

Theory:
Axioms
Inference rules

g

Proof Engine +
Strategies
N

Syntactic process: fransformation of ¢, via the inference
rules, into some axioms
Not automated for powerful theories (f. i. inductive ones)

Sept. 2007 Porquerolles 33

Formula ¢ — Theorem: yes/no/?

x4

Program Proving

 Significant and continuous progresses
— Great theorem provers: Coq, Simplify,
HOL/Isabelle, PVS...
— Powerful static analysis techniques

« Tendency

— Environments specialised for given couples
<programming language, specification/assertion
language> : Java/JML, C#/Spec#

 The assertion language is tailored for the programming
language

— Libraries of abstract modelling types (collections, etc)
— Big industrial investments : HP, Microsoft Research, ...

Sept. 2007 Porquerolles 34

191

%

Good old ideas (Hoare’s logics, Dijkstra’s wp calculus)
are still basic.

4
4
o ~
4
4
o 4
o —_—
! //:

But now, in addition...

A personal remark

Sept. 2007 Porquerolles 35

x4

Progresses and challenges

 Side-effects and aliasing handled by various program
logics
— Reasoning about heap structures and aliasing ©, but...
pb with invariants of complex object structures @

» Reasoning on breaking out of loops, or catching exceptions
solved by “logics for abrupt termination” ©

* Dynamic method binding and inheritance partially handled
by “behavioural subtyping” ©

» Gap between some abstract modelling types and concrete
types (quantifications, _.equals() versus =) ®

» Non-termination (loop variants, model-checkers) handled

in various cases © _
[Leavens, Leino, Muller, FAC 2007]
Sept. 2007 Porquerolles 36

192

%

Advances 1n static analysis

 Static analysis provides ways to obtain
information about possible executions of a
program without running it.

* It is an approximation

— indecidability of feasability => a super-set of the actual
executions is considered => possibility of false alarms
or inconclusive answers

* Main approaches:
— Abstract interpretation [Cousot 77] (f.i. the ASTREE
tool)
— ...Model-checking (sometimes called Software model-

checking, see later)
Sept. 2007 Porquerolles 37

x4

 Structured C programs, without dynamic memory
allocation and recursion, with no side-effect

* Check that some kinds of “run-time errors” cannot
occur during any execution in any environment
— Division by zero, Out of bound array indexing
— Arithmetic overflow
— User-defined assertions

* “Domain-aware” (logic and functional properties
of control/command theory)

— “Miracles” on the considered family of programs and

properties
Sept. 2007 Porquerolles 38

The static analyser ASTREE

193

Recommended reading on %
program proof and static analysis

Verified Software: Theories, Tools,
Experiments

Conference in Zurich, fall 2005

Under the auspices of Tony Hoare’s grand
challenge: « Verifying Compiler »

http://vstte.ethz.ch

Sept. 2007 Porquerolles 39

x4

Some “clear” definitions

Models
Programs
Systems
Properties

Model-checking
Program Proving

Testing

— Tendencies, progresses

Sept. 2007 Porquerolles 40

194

Sept. 2007

Testing

The actual system is executed for a
finite set of selected inputs
— NB: selected test sequences for

reactive systems

These executions are observed, and a
decision is made on their
conformance w. r. t. some

specification
Issues :

— Selection
— Oracle

— Control, non-determinism
— Assessment of the result of a test

Porquerolles

s

€ 7

- 2 ‘”J\pr

‘0&{’ v :

ﬂ‘ “

o

Selected Ouput,

test input observation

.

Oracle ‘J

~~

failure/
correct

41

Sept. 2007

Selection

Infinite input domain — finite test set, likely to lead to as
many failures as possible

The selection process can be based on:

Test purposes

Some characteristics of the input domain
The structure of the system or of the program

Some specification/model of the system, and or its environment

Coverage criteria of ... the input domain, the structure of the
system or of the program, the specification or the model are very

popular

Actually, the general idea is
— Infinite input domain — finite number of test cases (input sub-

— Uniformity hypothesis, regularity hypotheses

Porquerolles

domains) that correspond to uniform behaviours w. r. t. failures

42

195

More on Selection Hypotheses

* They formalise Common Test Strategies

— Uniformity hypotheses: based on some partition of the input
domain. “passing one test in each uniformity sub-domain is
sufficient”

— Regularity hypotheses: based on some size function on the tests.
“If all the tests of size less than or equal to a given limit are
passed, then it is true for all the Input Domain”
» Possibility to derive them from

— Static analysis of the program, or symbolic evaluation (and to
prove them using program proving)

— Analysis of some specification/model, and to prove/check them
* The notion of uniformity sub-domain is similar to
abstraction, but it is not clear that the same abstractions
must be used for testing and model-checking

Sept. 2007 Porquerolles 43

From test cases to test inputs

» Back to good old structural testing

true B 2 true B 4

B3 B5

false false

» The test case corresponding to executions of path B1 C1
B3 C2 B4 B6 is the path predicate ~C1 4, g; A C2 4., 5152

— This constraint must be solved to get some test input
— NB: may be unsatisfiable

Sept. 2007 Porquerolles 44

196

%

Constraint solvers

Essential tools for test generation (and theorem
proving)

Better and better systems for

— SAT-solving

— Finite domains (f. 1. boolean constraints)

— Linear arithmetics

— Specific domains (f. 1. finite sets)

In more general cases improvements due to
— Randomisation of the search of a solution

— Approximation (+ abstract interpretation)

Not yet powerful enough for the needs of realistic
system testing...

Sept. 2007 Porquerolles 45

x4

Random Testing

These methods can be classified into three
categories :

those based on the input domain
— Adaptive random testing

— Stochastic optimisation (simulated annealing, genetic

algorithms)
 those based on the environment == @
 and those based on some knowledge of the
behaviour of the IUT =

— Random walks

— Coverage-biased random selection

Sept. 2007 Porquerolles 46

197

A few words on adaptive @
random testing

 Failure-causing inputs tend to cluster together
following Ssome patterns (see naive examples below)

» These patterns are used to define probability
distributions on the input domain

— Statically (previous knowledge on the type of system)
or dynamically (£ random walks, stochastic
optimisation, learning)

T I
) o | o] o]

Sept. 2007 Porquerolles 47

A few words on coverage-biased
random selection

* OId classical idea for simulation and testing: random walks

» A random walk in the state space of a model (a control
graph, etc) is:
a sequence of states s, s, ..., s, such that s; is chosen uniformly at
random among the successors of the state s, |,
 Itis easy to implement and it only requires local
knowledge of the graph.

* Numerous applications in
— Testing (protocols), simulation
— Model-checking (recent works)

Sept. 2007 Porquerolles

198

Drawback of classical @

random walks

The resulting coverage is
dependent on the topology...

Classical random walks, length 3:

Prics e d) = 0.5 % 025 x 0.05 - 0.03125\ . &
Pr(b;e;f) =0.5

Uniform random sampling of traces, length 3:
Pr(a; c; d) = Pr(b; e; f) = 0.1

Sept. 2007 Porquerolles 49

Uniform generation of boundec@
paths 1n a graph

« Counting [Flajolet et al.]: Given any vertex v, let / (k) be the
number of paths of length k that start from v

— we are on vertex v with m successors v, v, .. ., v,

— condition for path uniformity: choose v, with probability /,; (k-1)/1,(k)
« Application to various criteria based on paths
* Generalisation to node coverage, branch coverage
» Assessment of the quality of the coverage ©
* Application to C programs (AuGuSTe) and to models

* The RASTA group, LRI, [ISSRE 2004], [Random Testing
Workshop 2006], [Random Testing Workshop 2007]

Sept. 2007 Porquerolles 50

199

%

Related work

* NB: in any case, constraint solving is required
— Open issue: uniform constraint solving (work in
progress : [Gotlieb, IRISA, 2006])
* Some similar tools
— PathCrawler, [Nicky Williams, CEA]

— DART, [Godefroid & al., PLDI 2005], linear
constraints

— In both cases “dynamic” test generation

— Only considered criteria: all paths < given length, no
other coverage criteria

Sept. 2007 Porquerolles 51

x4

You are all invited!

Second International Workshop on
RANDOM TESTING (RT 2007)

co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering
(ASE 2007)

Atlanta, Georgia, USA, November 6, 2007
http:// www.mathematik.uni-ulm.de/sai/mayer/rt07/
Ask for the program!

Sept. 2007 Porquerolles 52

200

%

Outline of the talk

* Some “clear” definitions
— Models, Programs, Systems, Properties
— Model-checking, Proof, Testing

* Not so clear variants of the definitions above

— Run-time verification, Model-checking programs,
Coverage in model-checking, Bounded model-
checking, Model-based testing, ...

» Along the talk: some examples of cross
fertilisation

Sept. 2007 Porquerolles 53

7?7

f ation, Model-chec rograms,

1_nlpdel-checking, Bound

Zoom in on

» What people call Software Model Checking

* What people call Model Based Testing

» What is Test Generation using Model-checking

Sept. 2007 Porquerolles 54

201

Software model-checking

s Qverapproximation

Program
-) Checkable
{i=0 ; read(x); Model
repeat {
i+ valid
perd(x, 1); }
until term(i,x) ; Model
a’ Checker Counter
- g Property example
Sept. 2007 Porquerolles 55

More precisely... CEGAR

« counter-examples guided abstraction refinement »
true counter

: infeasibl
Code Static |, easible example
i—0 anaIyS(" LT I—f_l) h
— Exclude infeasible

paths by adding Counter example
A 4 more predicates ‘ an alysis ’
(over- |
approximated@
del

model) 1Y . Counter

i example

Model wrt M,
Property », Checker
valid
Sept. 2007 Porquerolles 56

202

%

An example: SLAM/SDV

Specific to Windows device drivers

Reverse engineers a Boolean program from the C code,
that represents how the code uses the driver API

SLAM uses symbolic model-checking (SDV) and
abstraction refinement to check that the driver properly
uses the driver API

SDV includes some important domain expertise: a set of
API usage rules

Tailored for a certain class of errors
Up to 7000 lines C drivers, successful

[Ball et al., Microsoft research]

Sept. 2007 Porquerolles 57

x4

Deals directly with concurrent systems written in
C or C++

Complexity of states => “state-less’ search, based
on transition sequences

Partial-Order reduction => reduction of the
number of paths, “selective” DFS search and no
explicit construction of the model

Search for deadlocks, assertion violations,
bounded divergence and livelock

Dynamic observation of the concurrent system

Another example: VeriSoft

[Godefroid et al., Lucent Technologies]

Sept. 2007 Porquerolles 58

203

What is VeriSoft ?

Rather a scheduler/simulator than a model-checker

VeriSoft scheduler

processes
with
assertions

* automatic state-space exploration mode
* or interactive simulation mode
* based on
» model-checking algorithms
» dynamic analysis of independence of transitions

More on VeriSoft

Sept. 2007 Porquerolles 59
* Dynamic pruning

— At each state reached during the search, VeriSoft

computes a subset of the enabled transitions and ignores
the other ones.

— However, all the deadlocks are visited, and if there exists
a state where an assertion 1s violated, the search will visit
a state where the same assertion 1s violated

— Limitation of this result to acyclic models... but
successful experiments with cyclic models and bounded

DFS
» Successful analysis of several software products
developed in Lucent Technologies
— Example: CDMA cell-site processing library, 100 KLOC

Sept. 2007 Porquerolles 60

204

%

When 1s software
model-checking effective?

Data-intensive Digital signal Verifying compiler
processors ; ;
systems& . . . Financial software
Floating point units
Graphical processors
Control- Cache Embedded
intensive coherence software
SyStemsz pIOtOCOIS Device drivers

Bus controllers

Hardware Software

[Clarke et al. 2005]

Sept. 2007 Porquerolles 61

x4

\%a rograms,
i‘; odel-checking,

7?7

f -ation, Model-chec
Coverage 1 nodel-checking, Bounc

Model-based te

Zoom in on

* What people call Software Model Checking

» What people call Model Based Testing

» What is Test Generation using Model-checking

Sept. 2007 Porquerolles 62

205

Model-based testing

* Heavily overloaded term

— There 1s a MBT workshop associated with ETAPS, but...
* Almost everything is considered as a model (may be not wrong ©)
* Models considered here:
— Annotated graphs as in slide 4
— Finite State Machines (FSM), possibly extended (EFSM)

— Labelled Transition System (LTS), possibly with distinction
between inputs and outputs

— Back to [Chow 78] for FSM,

* recommended reading : Lee and Yannakakis survey [1996]

— and [Brinksma 88] for LTS, and then many others

Sept. 2007 Porquerolles 63

Back 1n history: testability @
hypothesis

« System under test SUT

— unknown, but...

» Hypothesis:
* the System Under Test behaves like some (unknown) FSM

with the same number of states as the description

— In other words, in the SUT, whatever the execution path leading to
some state s, the execution of transition s —x.:y-> s has the same
effect (same output + same change of state)

Sept. 2007 Porquerolles 64

206

Back in history: control and
observation

* A popular test strategy: transition coverage
s —x:y-> s’ is a transition. In state s, input x must produce output y
and move to state s’
* Questions

— control: how to put the System Under Test into a state equivalent
to s?
* solution 1: reliable(??) reset, and then adequate input sequence
* solution 2: “homing sequence”, and then adequate input sequence

— observation: how to check that after receiving x and issuing y, the
SUT is in a state equivalent to s ?

* «separating family » : collection {Z;},_, of sets of input sequences
whose output sequences make it possible to distinguish s; from any
other state

Sept. 2007 Porquerolles 65

One of the tests for
S -X/y->§’

/
ans W/N*(S;, W) Z/IN¥(S’, z)

x/y

homing sequence

* — *-.
hel* => answ €0*: z belongs to the

then the SUT state separating set of s’
should be equivalent
tos. w EI*: in the formal
description, w leads
froms_ tos.
< ><¢ —P < —>
preamble transition observation
execution
Sept. 2007 Porquerolles 66

207

A strong result

Checking sequence:

— covers every transition and its separating set; distinguishes the
description FSM from any other FSM with the same number of
states

Finite, but may be exponential...
— 1n length, construction
Exhaustivity
— transition coverage is ensured
Control
— homing sequence, or reliable reset
Observation
— distinguishing sets, or variants (plenty of them!)

Sept. 2007 Porquerolles 67

The LTS approach

Transitions are labelled by SUT

actions

» Concurrent composition
and synchronisations are
the key issues

Conformance relations are
no more equivalence, but
various testing preorders

Strong results on
derivation of exhaustive
test sets and selection

On-line or off-line

derivation methods
Sept. 2007 Porquerolles 68

208

77?7

Zoom in on

» What people call Software Model Checking

» What people call Model Based Testing

» What is Test Generation using Model-checking

Sept. 2007 Porquerolles 69

Test generation using model- @
checking

» Exploits the fact that model-checkers may yield
counter-examples
— Given @, a required property of the SUT
— Given a model M of the SUT
— Model-check M for — ¢

» The model-checker will reject — ¢ and produce a
counter-example, i.e. a trace that satisfies @, 1.€. a
test sequence for @

— Popular, most model-checkers have been experienced
for test generation
— Nice, but...

Sept. 2007 Porquerolles 70

209

4

ew 1ssues, ...and good old ones

» @ must be a formula in some temporal logic (not
always convenient)

* An example:

— @: AG(—request v (request U grant))

— —@: EF(request A —(request U grant))

— One counter-example is not enough (because of the
universal quantification) => exhaustivity and coverage
issues

» The finite model is an over-approximation of the
system

— Feasability, constraint solvers...
Sept. 2007 Porquerolles 71

Conclusion (1) @

 Significant advances in the three domains

— Each one makes use of the other ones in some
occasions

— Very good specialised tools

* A politically correct and frequent comment:

— All these methods are now used together, and this
convergence will lead to great results

— Model-checking is very powerful and solves most
problems in static analysis and model based testing and
more generally in verification

Sept. 2007 Porquerolles 72

210

%

» Many tricky scientific issues, among many others:

— Standard temporal logics can specify only regular
properties; correctness of procedures w. r. t. pre- and
post conditions are not regular [Alur 2005]...
Integration of model-checking and program proving is
not as clear as it is claimed by some authors.

Conclusions (2)
« We are not so far...

— Constraint solving remains a bottle-neck: most success
stories on large programs static analysis or testing are
either limited to linear arithmetic, or not fully
automated

— Dealing with the “abstraction gap” in proving
(reasoning with equality) and testing (oracle) is not

solved in general

Sept. 2007 Porquerolles 73

x4

Final conclusion

It is not because a
problem is undecidable
that one must not attack it.

Be cautious about miracles

Sept. 2007 Porquerolles 74

211

