
28/9/07 ReSIST Summer School, Porquerolles

Reflections on

Resilience

Tom Anderson
Newcastle University, UK

28/9/07 ReSIST Summer School, Porquerolles 1

Abstract

What do we want with regard to IT based systems (and

networks of them)? We want:

• safety, for ourselves and others;

• security of information;

• systems that deliver dependable service.

And we want this from systems that are resilient:

• to the impact of change;

• to the inevitability of flaws;

• to the attacks of the wicked.

It’s a very demanding requirement, and poses a

tremendous challenge. This concluding lecture offers a

few observations and hopes for the future.

28/9/07 ReSIST Summer School, Porquerolles 2

Reflections on …

Requirements

Context: This is the final talk of the ReSIST Summer School on

the gorgeous Mediterranean island of Porquerolles. For the past

week participants have been grappling with the issues, challenges,

techniques and technologies relevant to Resilient Systems. Work and

thought have never stopped since Monday.

Derived requirements:

• Work is now over

• Forget the abstract, keep it light

• Finish early

28/9/07 ReSIST Summer School, Porquerolles 3

Outline

Introductory stuff

Past, present, future

Reflections on:

terminology, concepts, wisdom,

consistency, simplicity, structure

Concluding stuff

28/9/07 ReSIST Summer School, Porquerolles 4

Future systems …

Sometimes called ubiquitous systems:

• networks of networks of systems of systems

• heterogeneous, dynamic, evolving

• inevitably enormously complex

• multi-scaled (from nano-scale devices to server farms)

• ambient, with mobile access

• critical embedded infrastructures

• globally distributed

28/9/07 ReSIST Summer School, Porquerolles 5

Future applications

Difficult to anticipate, but encompassing:

• personal communication, entertainment, enlightenment, enrichment

• transport

• commerce

• industry

• social and medical

• government

• military

28/9/07 ReSIST Summer School, Porquerolles 6

Future characteristics

In contrast to (some) past experience, we need these systems to be

! Safe – not inflict death or injury

! Secure – not betray our secrets

! Reliable – deliver intended service

! Resilient:

• Tolerant – to all manner of defects

• Robust – to a host of attacks

• Adaptive – to a variety of changes

In a word, we need them to be Dependable

– worthy of the trust and reliance we place upon them.

28/9/07 ReSIST Summer School, Porquerolles 7

Reflections on …

Timing

Past: Dependability would be rather nice

• FTCS Symposia started in 1971

• Corrosive influence of IT failures

Present: Dependability is really essential

• Overdue recognition has, in part, been driven by the
widespread impact of security weaknesses

• Framework 6 and 7

• NRC report on Software for Dependable Systems 2007

• Even Microsoft

Future: Dependability should be mandatory

28/9/07 ReSIST Summer School, Porquerolles 8

Reflections on …

Terminology

Dependability

Voter

Defects

28/9/07 ReSIST Summer School, Porquerolles 9

“Dependability” ?

Reliability, availability, integrity, security, safety, timeliness,

confidentiality, privacy, trustworthiness, usability, maintainability …

You name it …

But the systems we want should deliver on all relevant attributes.

Dependability was proposed as a label (signifier) to capture that one

simple single generic attribute:

The system does all of the things we want it to do,

and doesn’t do anything we don’t want,

mostly.

28/9/07 ReSIST Summer School, Porquerolles 10

The “Voter” ?

C

C

C

V

In the Triple Modular redundant system above the

“voter” V is the element that doesn’t vote - it selects

the majority decision from the elements C

28/9/07 ReSIST Summer School, Porquerolles 11

“Defects” ?

1. Bad State – the condition of the system is undesirable.

2. Bad Event – an undesirable occurrence in the system behaviour.

Failures, errors, faults,

blemish, blunder, “boob”, breach, breakdown, bug, cock-up,

crash, defects, deficiency, flaw, imperfection, inadequacy, lapse,

omission, oversight, shortcoming, slip, solecism, weak point, …

When things are not as we would want them to be,

there are only two fundamental concepts:

But whatever terminology you choose, there is no escape. All such

situations are the result of a mistake or misjudgement that we made.

You can’t put the blame on the real world. It doesn’t care.

28/9/07 ReSIST Summer School, Porquerolles 12

Reflections on …

Concepts

System Failure

A criterion of success (absence of failure) is imposed on the

behaviour of the system. If we assert that before time t the criterion

was always met, but that immediately after time t it was not met,

then a failure of the system occurs at time t .

But all systems, hardware and software, always behave exactly as the laws of

the Universe dictate. Either direct your complaint to the builder of the system

or the imposer of the criterion. Don’t blame the system.

28/9/07 ReSIST Summer School, Porquerolles 13

Reflections on …

Words of Wisdom

Testing can show the presence,

but never the absence of faults.

[Edsger Dijkstra]

Safety is a system property.

[Everyone I ever met in the safety community]

28/9/07 ReSIST Summer School, Porquerolles 14

Reflections on …

Consistency

A backward look at the origins of protocols for Byzantine agreement.

The “Interactive Consistency” problem.

Clock synchronisation in SIFT.

28/9/07 ReSIST Summer School, Porquerolles 15

The SIFT project

Funded by NASA (Langley) in the late 70s.

An architecture to deliver a highly dependable avionics platform.

Prime contractor: SRI International in Menlo Park, California.

Multiple processing nodes; redundant computations; verified

software to allocate computational tasks, coordinate the nodes and

obtain a consensus result …

despite arbitrary node failures, up to a pre-specified limit.

28/9/07 ReSIST Summer School, Porquerolles 16

The drifting clocks

SIFT coordination algorithms require the clocks in all non-faulty

nodes to “agree” on the time.

But all clocks drift apart eventually, and therefore must be

synchronised at intervals.

All non-faulty clocks must agree after synchronisation, even though

some of the clocks may be arbitrarily defective (we have to set a

limit on how many faulty clocks there are, of course).

The simplest non-trivial case is 3 clocks, at most one faulty.

28/9/07 ReSIST Summer School, Porquerolles 17

The claim

“No such algorithm exists for 3 clocks.

There is an algorithm for 4 clocks, at most one faulty.

We have proved this.”

Lamport, Shostack and Pease (1979)

28/9/07 ReSIST Summer School, Porquerolles 18

The arrogance of youth

A young researcher heard of the claimed proof, and was

encouraged to seek for a counter example:

a solution algorithm for 3 clocks.

In just two days he had the algorithm: an elegant but utterly non-

standard approach which (a) clearly worked and (b) exploited - for

sure, he guessed - some unknown unstated assumption on which

the proof assuredly depended.

28/9/07 ReSIST Summer School, Porquerolles 19

Pride cometh before a fall

Young and cocky maybe, but not totally stupid. This was the plan.

Step 1: Prove new algorithm works.

Step 2: Send algorithm and proof to SRI. (Much hilarity.)

Step 3: Collect the rewards of fame and success.

Alas, two days (and nights) later the young researcher had

abandoned algorithm and proof and instead had created from

scratch a sketch of the SRI non-existence proof.

28/9/07 ReSIST Summer School, Porquerolles 20

The insight

Classic approach for 3 clocks is the median algorithm: output all 3

values to all 3 clocks and synchronise on the median (middle) value.

But no assumptions (at all) can be made about the 1 faulty clock. It

destroys the median algorithm by sending different values of its

own time to the 2 good clocks.

The natural fix is to perform a cross-check on values to detect any

inconsistent values from a suspect clock.

But none of this can ever succeed. The key point is that you must

assume that the faulty clock knows everything that you do,

however subtle. It’s not only malicious, it is omniscient too.

28/9/07 ReSIST Summer School, Porquerolles 21

The insight

The faulty clock was already aware of my method,

whatever it was.

28/9/07 ReSIST Summer School, Porquerolles 22

An epilogue

Just a few years later John Wensley published (in

FTCS) a working algorithm for synchronising 3 clocks

when at most 1 clock can exhibit arbitrary faulty

behaviour.

His much better approach was to breach (quietly) one

of the stated basic assumptions of the proof and

thereby evade the argument. The interactive

consistency community thought this was, well, rather

evasive, but any practising engineer would regard it as

an obvious way to proceed.

28/9/07 ReSIST Summer School, Porquerolles 23

Reflections on …

Simplicity

From Goethe to Eddington to Hoare

Everything is simpler than you think
and, at the same time, more complex than you imagine.
Goethe

We used to think that if we knew one, we knew two,
because one and one are two.
We are finding that we must learn a great deal more about and.
Sir Arthur Eddington

The price of reliability is the pursuit of simplicity …
C.A.R. Hoare

28/9/07 ReSIST Summer School, Porquerolles 24

Reflections on …

Structure

If there is to be a generic “solution” to designing appallingly

complex systems that are, nevertheless, dependable, then it must lie

in underlying simplifying structural principles, which enable the

salient and essential emergent properties of a system to be

“guaranteed” despite the intrinsic difficulties.

28/9/07 ReSIST Summer School, Porquerolles 25

Basic module

Service

Requests

Normal

Responses

Normal
Activity

Service

Requests

Normal

Responses

28/9/07 ReSIST Summer School, Porquerolles 26

Resilient module (1981)

Service

Requests

Normal

Responses

Interface

Exceptions

Normal
Activity

Exception
Handling

Service

Requests

Normal

Responses

Failure

Exceptions

Interface

Exceptions

Failure

Exceptions

Return to normal operation

Internal Exceptions

28/9/07 ReSIST Summer School, Porquerolles 27

Basic process

Request Request

Response Response

28/9/07 ReSIST Summer School, Porquerolles 28

Resilient process (2004)

Interface/Failure/Internal

ExceptionRequest/Response

Recovery

28/9/07 ReSIST Summer School, Porquerolles 29

Almost there …

A personal journey:

• from unaware logician [school]

• to mathematician in training [university]

• to inexperienced analyst [research associate]

• to aspiring engineer [professor]

• to despairing engineer [dean]

• to optimistic envisioner of rigorous socio-engineering of fantastic

technical systems that are directly embedded in the society they serve

(must read Asimov again)

28/9/07 ReSIST Summer School, Porquerolles 30

Wrapping up

A personal view:

! System architecture must offer (almost) complete freedom

! System infrastructure must enforce fundamental constraints

• Constraints can never be breached

• All breaches are detected

• Penalties are severe

! All elements should have a protective wrapper

• Protection for imports and exports

• Dependability (meta)data needs to be explicit and pervasive

! Resilience capability driven by wrapper response to metadata

28/9/07 ReSIST Summer School, Porquerolles 31

Reflections on …

Programming

Flon’s Law

There is not now

and never will be

a programming language in which it is the least bit

difficult to write bad programs.

Larry Flon

28/9/07 ReSIST Summer School, Porquerolles 32

Reflections

Sunrise on Mt Assiniboine, Canadian Rockies: Miles Hecker

