

Towards attack modelling thanks to honeypot data processing

Marc Dacier

Institut Eurécom Sophia Antipolis, France dacier@eurecom.fr

Res

- Introduction
- State of Knowledge
- Contributions of ReSIST Partners
- Conclusions

- Fact: New vulnerabilities discovered every day, new widespread attacks reported in the media.
- Questions:
 - Are these vulnerabilities actually exploited?
 - What are the "right" fault assumptions models that one should use to build intrusion tolerant systems?

Dahu: definition

source: http://www.vidonne.com/html/dahu-

reignier.html

"The Dahu is an extremely shy animal living in the Alps of France and Switzerland.[...] It has adapted to its steep environment by having legs shorter on the uphill side and longer on the downhill side [...]

"The Dahu, An endangered Alpine species", *Science*, 2568, November 1996, pp.112:

Food for thoughts

- Dahus are rare, bizarre, stimulating from an intellectual point of view but ...
- Does it justify the existence of *Dahusian research*?
- What about *Dahusian research* in security assessment?

Overview

- Introduction
- State of Knowledge
- Contributions of ReSIST Partners
- Conclusions

The basics (ctd.)

- . Low interaction honeypots:
 - emulate the existence of a potential target,
 - At various abstraction levels (network, OS, application)
- . High interaction honeypots:
 - Use a real system as a potential target
 - Must be kept under close scrutiny.

Internet Telescopes

- Internet Telescopes observe empty address spaces:
 - CAIDA Telescope,
 - IMS,
 - iSink,
 - Minos,
 - Team Cymru,
 - Honeytank,
 - IUCC/IDC Internet Telescope (Israel),
 - Etc...
- The Honeynet Alliance promotes the use of high interaction honeypots.

Problems with current solutions

. False positives

 It may be difficult to discriminate true attacks from erroneous, yet legitimate behaviours, in data collected in real networks.

Privacy

 Data sets may contain private information (eg IP addresses, passwords, etc.). Anonymisation removes semantic and is therefore not always usable.

Liability

 Not stopping an ongoing attack may harm third parties. Major issue for high interaction honeypot.

Problems with current solutions (ctd.)

- . Bias
 - Things may be different here and there.
 - Malicious users dislike to be observed and will avoid visiting known observation points (eg .mil, major corporate networks, etc..)
- Amount of data
 - Having access to a large amount of data is good
 - Having access to a rich amount of data is better.
 - Having access to a rich amount of complete and comparable data is even better!

Summary

- . What we need is:
 - an environment to collect unbiased, rich, complete and comparable data about attacks without facing liability or privacy issues.
- . To do so, we have deployed:
 - the very same low interaction honeypots in a large number of diverse locations using each time a very limited amount of IP addresses. We collect all packets sent to or from these machines, including payload.

- Introduction
- State of Knowledge
- Contributions of ReSIST Partners
- Conclusion:

Collaborative approach

- Leurré.com framework used as a common umbrella to carry out joint research in this thema.
- Some partners bring also on the table the expertise gained with their own proprietary dataset (eg. IBM with its internal Billy Goat project).

50 partners in 30 countries covering the 5 continents

Win-Win Partnership

- The interested partner provides ...
 - One old PC (pentiumII, 128M RAM, 233 MHz...),
 - -4 routable IP addresses,

• The project offers ...

- Installation CD Rom
- Remote logs collection and integrity check.
- Access to the whole SQL database by means of a secure GUI and a wiki (over https).

D12 - Appendices

•[Alata et al. 2006] E. Alata, V. Nicomette, M. Kaaniche and M. Dacier, "Lessons learned from the deployment of a high-interaction honeypot", Proc. Sixth European Dependable Computing Conference (EDCC-6), Coimbra, Portugal, October 18-20, 2006

•[Kaâniche et al. 2006] M. Kaâniche, E. Alata, V. Nicomette, Y.Deswarte, M. Dacier, "Empirical analysis and statistical modelling of attack processes based on honeypots", Proc. of WEEDS 2006 workshop on empirical evaluation of dependability and security, Philadelphia (USA), June 25 - 28, 2006.

[Alata et al. 2006]

- High interaction honeypots are not that rapidly detected.
- They help in identifying groups of attackers and their strategies.
- They are complementary to low interaction ones
- Very difficult to use to collect long term datasets.

[Kaâniche et al. 2006]

 Propagation graphs open the way to predictive models for <u>some</u> <u>attacks</u>

[Kaâniche et al. 2006]

 Patterns of attacks common to several platforms open the way to predictive models for <u>some platforms</u> (20/12/06 - 31/1/07)

Conclusions

- First results demonstrate the usefulness of such datasets with respect to the proposed objectives.
- Honeypots with higher degree of interaction would be welcome.
- Models must be formalized and validated.

